
UNM Physics 452/581: Introduction to Quantum Information

Lecture 6: Examples of query problems

Andrew J. Landahl, alandahl@unm.edu
(DRAFT: September 19, 2007)

1 Query complexity

The question I want to address in today’s lecture is, “How hard is it to compute a function
g : X → Y ?” This sounds like a question with no objective answer. For example, your
buddy Larry might be able to compute every g(x) in a flash, whereas your other buddy Moe
might take an eternity just to figure out a single g(x). Well, I’ve got good news and bad
news. The good news is that one can objectively quantify how hard it is to compute g. The
bad news is that there are many different ways of doing so! So is that progress? I don’t
know. But what I do know is that today’s lecture is going to focus on just one of these
objective measures called the query complexity of g.

To make our task a bit simpler, let’s restrict our attention to functions between finite
sets. Moreover, let’s restrict our attention further to functions whose input is a subset of
N -letter strings. In other words, for today’s lecture we’ll consider functions g : X → Y
where the following is true:

N ∈ N := {1, 2, 3, . . .},
X ⊆ ΣN , where Σ is a finite set of symbols or letters ,

Y is a finite set.

We’ll give special names to g when its input or output set satisfies special properties. In
particular, we’ll use the following nomenclature:

X = ΣN : g is a total function.

X ( ΣN : g is a partial function.

Y = B : g is a Boolean function.

A measure of how hard it is to compute g is called a measure of its computational
complexity, or briefly, its complexity. Most such measures express how hard it is to compute
g for the worst-case input. For example, if X = B and g(0) takes an hour to compute but g(1)
takes ten hours to compute, then a typical measure would say that g has a computational
complexity of ten hours. That’s pretty darned conservative! In many practical situations it
is the average-case complexity that is more relevant. For example, if one knew that g(0) was
needed 90% of the time and g(1) was only needed 10% of the time, then a more practical
complexity measure would report 90%(1 hour) + 10%(10 hours) = 1.9 hours. The problem
with average-case measures, discovered by computer scientists long ago, is that they are
extremely sensitive to the whims of their priors—sometimes even a minor change will change
the average-case complexity dramatically. A safer, and perhaps more lawyerly, approach is

Lecture notes by Andrew Landahl c© 2007 page 1

mailto:alandahl@unm.edu


UNM Physics 452/581: Introduction to Quantum Information

to stick to worst-case complexity. We’re going to continue this fine cover-your-butt tradition
here.

* * *

As I mentioned, the computational complexity measure we’re going to focus on today
is the query complexity. Let’s denote the query complexity of g by D(g) and define it as
follows:

D(g) := min
q∈N

max
x∈X
{q | q letters of x determine g(x)}.

In words, D(g) is the minimum number of input letters needed to evaluate g(x) for the
worst-case input x to g. When N is considered as a variable, so that g describes a family of
functions indexed by N , we will express D(g) as a function of N .

There are at least two strange things about the notation and language I’ve used so far.
The first is my choice of the letter D for something called the “query complexity.” It turns
out that D(g) is just one of several query complexity measures that we will encounter, and
this one is conventionally called the “deterministic classical query complexity,” hence the D.
The second is my use of the word “query” in naming the measure—this word doesn’t appear
anywhere in its definition! The reason for using this word is that we can imagine a process
whereby letters of an input x are obtained by a physical process called a query. This is a
prime example of where physics and information collide—the input x must be stored in a
physical system, so accessing its letters must be a physical process!

If the introduction of the word ‘query’ doesn’t convince you that computer scientists were
crying out for help from their physicist friends, the introduction of the word ‘oracle’ should.
You see, some computer scientists have gone so far as to describe they querying process as
follows. The input string x is held by an “oracle,” and individual letters of x are accessed
by making queries to the oracle. So a query exchange might go something like the following:

“Oh great oracle, what is the first letter of your input?”

“Z”

“Oh great oracle, what is the second letter of your input?”

“z”

“Oh great oracle, what is the third letter of your input?”

“z”

“I think he’s sleeping!”

Okay, all melodrama aside, it is clear that computer scientists recognized something funny
was going on when they introduced the words “query” and “oracle” to the computational
complexity lexicon.

At this point, in a typical course covering quantum algorithms, the lecturer carefully
describes a number of physical query models and the properties they can have, such as being
reversible or irreversible, being deterministic, randomized, or quantum, or being exact, zero-
error, or bounded-error. I started to go in that direction in the last lecture, but afterwards a
number of students told me that they were having trouble getting what this whole querying
business was about in the first place. So what I’ve decided to do is defer a rigorous description

Lecture notes by Andrew Landahl c© 2007 page 2



UNM Physics 452/581: Introduction to Quantum Information

of query models and their properties and instead go through a large number of examples of
query problems first. In order to do that, I need to give at least a rough model for what a
query is, so let’s let it be the following: a query corresponds to submitting an i ∈ {1, . . . , N}
to the oracle and obtaining the letter xi in response. Without further ado, let the examples
begin!

2 Examples of query problems

2.1 Deutsch’s problem

Deutsch’s problem1 is the problem of computing the parity of two bits. In the notation we’ve
developed, it’s the problem of computing the total Boolean function with the following set
of parameters:

N = 2, Σ = B, Y = B, X = B2, (1)

g(x) := x0 ⊕ x1. (2)

To visualize this problem, we can construct a table I’ll call a query table. In such a table,
all of the possible values for x ∈ X are written as N -letter strings in columns labeled by
x(0), x(1), . . . , x(|X|). The rows of the table are labeled by the possible queries i = 0, 1, . . . N−1
that could be made. The final row of the table lists the values g takes for each possible input.
For Deutsch’s problem, the query table is the following.

i x(0) x(1) x(2) x(3)

0 0 0 1 1
1 0 1 0 1
g 0 1 1 0

Important point: There is no meaning to the order of the columns in a query
table. For Deustch’s problem I chose to order them by the binary value of the strings, but
any other ordering would have worked just as well.

Using this table, the question we’d like to answer is, what is the query complexity of
Deutsch’s problem? Suppose one queried the first letter (i = 0). Then x becomes re-
stricted to one of the two boxes below: (N.B., The boxes still need to be drawn in

the table.)

i x(0) x(1) x(2) x(3)

0 0 0 1 1
1 0 1 0 1
g 0 1 1 0

Does this determine the value of g? No. Each box has two possible g values available, as
the bottom row of the query table indicates, so still one more query is needed. How about if

1That’s David Deutsch, not our own Ivan Deutsch here at UNM.

Lecture notes by Andrew Landahl c© 2007 page 3



UNM Physics 452/581: Introduction to Quantum Information

one had queried the second letter instead (i = 1)? Then x would have been restricted to one
of the following two different “boxes” below: (N.B., The boxes still need to be drawn

in the table.)

i x(0) x(1) x(2) x(3)

0 0 0 1 1
1 0 1 0 1
g 0 1 1 0

Each of these boxes also has two possible g values available, so g isn’t determined by this
strategy either. In a nutshell, evaluating the parity of two bits requires two queries, so we
have

D(g) = 2. (3)

The conclusion that the query complexity of this problem is two is so transparent that
it came as quite a surprise when, in 1989, David Deutsch showed that there is a quantum
algorithm that computes g using just one quantum query.

2.2 Two-bit AND on even-parity strings

After considering Deutsch’s problem, you may get the impression that the query complexity
of every function on N letters is N . Here’s a quick little example to show you that this isn’t
the case. Consider the following query problem:

N = 2, Σ = B, Y = B, X = {00, 11}, (4)

g(x) := x0 ∧ x1. (5)

This is a partial function, representing the AND of two bits of even parity. The query
table for this problem is

i x(0) x(1)

0 0 1
1 0 1
g 0 1

It is clear from this table that once one bit of the input is known, the function g is
determined entirely. Hence the query complexity is one, not two, for this partial function:

D(g) = 1. (6)

2.3 The N-bit OR, a.k.a. Grover’s problem

For our first example of a query problem with a variable-sized input, consider the problem
of computing the or of a collection of N bits. The parameters of the problem are as follows:

N ∈ N, Σ = B, Y = B, X = BN , (7)

g(x) := x0 ∨ · · · ∨ xN . (8)

Lecture notes by Andrew Landahl c© 2007 page 4



UNM Physics 452/581: Introduction to Quantum Information

The query table for this problem is

i x(0) x(1) . . . x(2N−1)

0 0 0 . . . 1
1 0 0 . . . 1
...

...
... . . .

...
N − 1 0 1 . . . 1

g 0 1 . . . 1

How many queries does it take to compute g? Well in the worst case, every query returns
a 0. It’s not until the Nth query that one can distinguish between g(x) = 0 and g(x) = 1.
So the query complexity of this problem is N :

D(g) = N. (9)

Although it’s pretty obvious what the query complexity of this problem is, I want to
point out some of features of N -bit or before leaving it. The first is that because this is an
N -letter problem, the indices i sent to the oracle range from 0 to N − 1. Hence each index
requires dlog2 Ne bits to represent it, where dae denotes the largest integer greater than or
equal to a. The key point I want to get across is that the size of this “query register” is
totally independent of the size of the alphabet Σ—it only depends on N .

The second point I’d like to make is that the query complexity of this problem is N even
when g is just the partial function defined on input strings having at most one ‘1’ in them,
i.e., on the input set

X = {0N} ∪ {0k10N−k−2 | k = 0, . . . , N − 2} (10)

A more compact way of representing this set is to use the notion of the Hamming weight or
more briefly the weight of a bit string. The Hamming weight of a string x ∈ BN is defined
as

wt(x) := The number of occurrences of the letter ‘1’ in x. (11)

So using this function, we could equally well define X as

X = {x ∈ BN | wt(x) ≤ 1}. (12)

The reason that D(g) is unchanged in this case is that g = 0 only for one input as before,
and in the worst case every letter of x needs to be known to figure this out—a single 1 for
any input letter will make the function evaluate to 1 instead of 0.

Sometimes this problem, or its restriction to weight-one-or-less strings, is called the Un-
ordered Search problem. The reason for this is that it is the same as the problem of
trying to find an item in an unordered list x = (x0, . . . , xN) where each xi is no longer
necessarily a bit and the queries are not of the form “What is the ith letter of x?” but
rather “Is xi the same as the item I am looking for?” For example, finding the ace of spades

Lecture notes by Andrew Landahl c© 2007 page 5



UNM Physics 452/581: Introduction to Quantum Information

in an unshuffled deck is an instance of the Unordered Search problem. Regardless of
the nature of the items in the list, be they elephants, typewriters, or grapes, these kind of
comparison queries yield only a single bit: 1 if it is a match and 0 if it isn’t, so the N -bit
Boolean or function captures this process exactly.

A final comment about this problem: Why have I called it Grover’s problem? Well the
reason doesn’t have anything to do with a lovable furry blue Muppet, in case you were
wondering. No, it has to do with the fact that Lov Grover in 1996, then at Bell Labs,
discovered a quantum algorithm for this problem that requires only on the order of

√
N

quantum queries. His quantum algorithm achieving this was within a constant multiple of
a lower bound on the best-possible quantum algorithm for this problem, proved two years
earlier in 1994 by Bernstein, Bennett, Brassard, and Vazirani.

2.4 The ordered search problem

In the previous problem, we saw that the Unordered Search problem with comparison
queries could be mapped onto the N -bit or problem with ordinary letter queries. Can the
same kind of mapping be done when the list is ordered? Yes! A query on an ordered list
returns more information than a query on an unordered list. An ordered list query is of
the form “Is xi greater than, less than, or equal to the item I’m looking for?” This is a
three-valued answer, but if our goal is simply to find the first instance of the item we are
looking for in the list, then queries of the form “Is xi greater-than-or-equal-to or less than
the item I’m looking for?” will suffice. Of course, there is the possibility that the item is
nowhere in the list. To account for this, two versions of the Ordered Search problem are
usually put forward. In the first version, there are N items in the list, and one is promised
that the item being sought is somewhere in the list. In the second version, there are N − 1
items in the list, and the object is to insert the item into the list such that it preserves
the list’s order. Since an (N − 1)-element list has N insertion points (including at the very
beginning and the very end), this is the same problem as the first formulation, because one
is guaranteed that there is an insertion point somewhere.

Because of the binary-valued comparison questions being used (1 = “greater-than-or-
equal-to”, 0 = “equal to”) and the ordering of the list, one can map the Ordered Search
problem onto the following problem using ordinary letter queries on the partial function g:

N ∈ N, Σ = B, Y = ZN , (13)

X = {0k1N−k | 0 ≤ k ≤ N − 1}, (14)

g(x) := min
k
{xk = 1}. (15)

Unlike our letter-query model for Unordered Search, our letter-query model for Or-
dered Search returns an index from 0 to N − 1 (i.e., in ZN), not a bit. So this is our first
example where Y isn’t just B, making g a non-Boolean function.

To determine the query complexity of this problem, we can construct a query problem

Lecture notes by Andrew Landahl c© 2007 page 6



UNM Physics 452/581: Introduction to Quantum Information

table as before:

i x(0) x(1) . . . x(N−1)

0 0 0 . . . 1
1 0 0 . . . 1
...

...
... . . .

...
N − 2 0 1 . . . 1
N − 1 1 1 . . . 1

g N N − 1 . . . 1

It’s relatively straightforward to see that dlog2 Ne queries suffice to evaluate g. The
algorithm that achieves this is the familiar binary search algorithm. One first queries at the
middle of the string, ruling out half the possible strings, then queries at the middle of the
remaining substring, ruling out half of the substrings, and so on. Since each query divides
the space of possibilities by two, the query complexity is

D(g) = dlog2 Ne. (16)

Proving that no algorithm can do any better is a little trickier. A rigorous argument
involves information-theoretic reasoning and is beyond the scope of where we are currently
in the course. For now we can just use casual reasoning and note that since there are N
possible values of g that we need to determine, and it takes dlog2 Ne bits to represent the
answer, then at least that many queries need to be made.

The current status (ca. Sep. 2007) of the quantum query complexity of this problem is
open. It is known that no quantum algorithm can solve this problem using fewer than 1

π
ln N

queries, but the best known algorithm is one I developed with Andrew Childs and Pablo
Parrilo that uses 4 log605 N ∼= 0.43 log2 N quantum queries. Almost certainly fewer queries
suffice, but whether it is possible to attain the lower bound is unknown.

2.5 The Deutsch-Jozsa problem

Historically, the Deutsch-Jozsa problem was the first query problem scaling with N that was
studied in a quantum context. It’s named for David Deutsch and Richard Jozsa, who wrote
about it in 1992. I should mention that Jozsa’s last name is spelled “Jozsa” and not “Josza.”
I’m always getting that wrong. Richard’s a great guy from Australia (currently a professor
in the UK)—the kind of guy you’d like to have a beer with—but he’s got this last name that
vexes me every time! Anyway, the problem he and David Deutsch studied was the problem
of determining whether an input N -bit string was “constant,” meaning that it was either
all 0s or all 1s, or “balanced,” meaning that it had half 0s and half 1s, given that one or
the other was promised to be the case. In the notation we’ve developed, their problem is as

Lecture notes by Andrew Landahl c© 2007 page 7



UNM Physics 452/581: Introduction to Quantum Information

follows:

N ∈ 2N, Σ = B, Y = B, (17)

X = {0N , 1N}︸ ︷︷ ︸
constant

∪{x ∈ BN | wt(x) = N/2}︸ ︷︷ ︸
balanced

, (18)

g(x) =

{
0 x is constant

1 x is balanced.
(19)

There are
(
N
N/2

)
∼ 2N/2 possible balanced strings, so our query problem table for this

problem looks like

i x(0) x(1) x(2) x(3) . . . x(2+( N
N/2))

0 0 1 0 0 . . . 0
...

...
...

...
... . . .

...
N − 3 0 1 0 1 . . . 1
N − 2 0 1 1 0 . . . 1
N − 1 0 1 1 1 . . . 1

g 0 0 1 1 . . . 1

How many queries are needed to evaluate g in the worst case? Well, in the worst case,
the first N/2 queries all yield the same result, leaving g undecided. However with one more
query, g becomes completely known. Hence the query complexity of this problem is

D(g) =
N

2
+ 1. (20)

The amazing thing about this problem is that Deutsch and Jozsa showed that this func-
tion can be computed in just a single quantum query!

This problem can be stated in a more convoluted way that will make the subsequent
query problem’s we will discuss appear more transparent. We’ll do it as follows. Let s ∈ BB
and let the input set to G be defined in terms of s:

X = {x ∈ BN |wt(x) =
N

2s
mod N}.

The function g that the Deutsch-Jozsa problem considers is then g(x) = s.

2.6 The Bernstein-Vazirani problem

The Bernstein-Vazirani problem is to determine the query complexity of a partial non-
Boolean function defined on bit strings whose length is a power of two. The formal definition
of the problem is

n ∈ 0 ∪N, N = 2n, Σ = B, Y = Bn, (21)

X = {x = (x0, . . . xN−1) ∈ BN | xi = i · s} (22)

g(x) = s. (23)

Lecture notes by Andrew Landahl c© 2007 page 8



UNM Physics 452/581: Introduction to Quantum Information

As with the Deutsch-Jozsa problem, there is a parameter s—in this case, s is an n-bit
string—that is used to define the structure of the input set, and the function g returns its
value. The notation i · s indicates the bitwise inner product between the two n-bit strings:

i := (i0, . . . , in) s := (s0, . . . , sn)

i · s := i0s0 ⊕ · · · ⊕ insn.

What is the query complexity of this problem? Rather than writing out a query table,
it’s clearer to just reason about the problem directly. To learn s, it suffices to learn each
of its n bits. Every time a query is made at an index that is a power of two, so that the
index is a weight-one n-bit string, a single bit of s is obtained. This is because x2k equals
the kth bit of s according to the definition of X and the bitwise inner product. So querying
i = 1, 2, 4, 8, 16, . . . will allow g to be evaluated in n queries, which is the number of bits
needed to describe s. Hence, the query complexity of the Bernstein-Vazirani problem is

D(g) = log2 N. (24)

Why is this called the Bernstein-Vazirani problem, you ask? Well because it was studied
by Bernstein and Vazirani of course! Seriously, Bernstein and Vazirani showed that there is
a quantum algorithm for this problem that makes only a single quantum query. More signifi-
cantly, they considered a generalized “recursive” version of this problem that requires on the
order of log2 log2 N quantum queries whereas the best possible classical algorithm requires
log2 N log2 log2 N queries (even when randomized algorithms are allowed, which we haven’t
talked about yet). Since the inputs to a query algorithm are indices, which require n bits to
specify, sometimes query complexity is expressed as a function of n rather than N . Doing so
reveals that the best possible classical query algorithm for the recursive Bernstein-Vazirani
problem requires on the order nlog2 n queries whereas the Bernstein-Vazirani quantum query
algorithm uses only log2 n queries. Historically, this was the first problem for which a super-
polynomial separation in query complexity was demonstrated between classical and quantum
query algorithms.

Add boxes to Deutsch problem query tables. ToDo

Lecture notes by Andrew Landahl c© 2007 page 9


	Query complexity
	Examples of query problems
	Deutsch's problem
	Two-bit AND on even-parity strings
	The N-bit OR, a.k.a. Grover's problem
	The ordered search problem
	The Deutsch-Jozsa problem
	The Bernstein-Vazirani problem


