Ph 453 Lecture 2-3

Quantum State Discrimination: Which state do I have?
Prior probability distribution: $p_i \propto \text{prob}_i$, $i = 1, \ldots, N$

Quantum State Estimation: any state possible (N = ∞)

Quantum Set Discrimination: Which subset is p_i in?

Quantum Hypothesis Testing

1. $p_i \in \mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ or $\mathcal{P}_4, \mathcal{P}_5, \mathcal{P}_6, \mathcal{P}_7, \mathcal{P}_8, \mathcal{P}_9$?
 [Usual: imagine only one copy of p available]

 Quantum Filtering: $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$?

 \Rightarrow Same as $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ (Borgs, Herzog, Hillery does)

 Quantum State Discrimination: $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \ldots, \mathcal{P}_9$?

"Better to guess than to keep quiet."

Minimum Error Discrimination (MED)

\Rightarrow Always guess some state p_1, \ldots, p_N.
\Rightarrow Goal is to minimize average error probability.

"Better to keep quiet than to guess."

Unambiguous State Discrimination (USD)
\Rightarrow Always guess correctly (or is inclusive).
\Rightarrow Goal is to minimize average inclusive probability.

N.B. MED, USD are good topics for Wiki articles!
Current Status: When is optimal measurement known?

M E D:

SDP

Nec. & sufficient conditions for N mixed states. (Holevo, 1972)

$N=2$ solved analytically (Helstrom, 1976)

$\rho_{\text{in}} = \frac{1}{2} - D(m_1, m_2)$ [Helstrom limit]

$N > 2$ unsolved except special cases

ρ_{in} even unknown for $N > 2$, but bounds are known.

U S D:

Nec. & suff. conditions for N pure states. (Chefles, 1998)

N pure states solved? (Jafarizadeh et al., Aug 2007)

N mixed states unsolved (even $N=2$!)

Nec. & suff. results for $N=2$ mixed states (Furuok, Jezek 2003)

p_{in} known, but bounds known for $N > 2$

$N=2$, one pure state, one mixed state solved (Bergou, Heron, Hilley and "Quantum Filling"

What I was trying to show in last lecture

$N=2$ pure states solved analytically (Järger, Shimony 1995)

$N=2$ pure states, $m_2 = \frac{1}{2}$ solved analytically

(Ivanovic, Dicks, Peres 1987)
USD, N=2 pure states: $|\psi_1\rangle, |\psi_2\rangle$, $m_i = \frac{1}{2}$, $\langle \psi_1 | \psi_2 \rangle \neq 0$

\[
P_{\text{cond.}} = \max_{\rho \in \mathcal{C}_{N=2}} 1 - \text{Tr} \left(E_{\rho} \rho \right) ; \quad p_{\text{min}} = \min_{\rho \in \mathcal{C}_{N=2}} \text{Tr} \left(E_{\rho} \rho \right)
\]

Strategy 1: $E_1 = |\psi_1\rangle \langle \psi_1| \rightarrow \text{guess } |\psi_1\rangle$

$E_2 = |\psi_2\rangle \langle \psi_2| \rightarrow \text{in general}$

\[
p_{(1)} = 1 - \frac{1}{2} \text{Tr} \left(E_1 |\psi_1\rangle \langle \psi_1| \right) - \frac{1}{2} \text{Tr} \left(E_2 |\psi_2\rangle \langle \psi_2| \right)
\]

\[
p_{(1)} = 1 - \frac{1}{2} |\langle \psi_1 | \psi_1 \rangle|^2 - \frac{1}{2} |\langle \psi_2 | \psi_2 \rangle|^2
\]

Strategy 2: $E_1 = \frac{1 - |\langle \psi_1 | \psi_1 \rangle|}{1 + |\langle \psi_1 | \psi_1 \rangle|}, \quad E_2 = \frac{1 - |\langle \psi_2 | \psi_2 \rangle|}{1 + |\langle \psi_2 | \psi_2 \rangle|}$

$E_3 = I - E_1 - E_2$

\[
p_{(2)} = 1 - \frac{1}{2} \text{Tr} \left(E_3 |\psi_1\rangle \langle \psi_1| \right) - \frac{1}{2} \text{Tr} \left(E_3 |\psi_2\rangle \langle \psi_2| \right)
\]

\[
p_{(2)} = 1 - \frac{1}{2} \left(|\langle \psi_1 | E_3 \psi_2 \rangle|^2 - \frac{1}{2} |\langle \psi_1 | E_3 \psi_1 \rangle|^2 - \frac{1}{2} |\langle \psi_2 | E_3 \psi_2 \rangle|^2 \right)
\]

\[
p_{(2)} = 1 - \frac{1}{2} \left(|\langle \psi_1 | E_3 \psi_2 \rangle|^2 - \frac{1}{2} |\langle \psi_1 | E_3 \psi_1 \rangle|^2 - \frac{1}{2} |\langle \psi_2 | E_3 \psi_2 \rangle|^2 \right)
\]

\[
p_{(2)} \leq p_{(1)} \quad \forall \langle \psi_1 | E_2 \psi_2 \rangle
\]

"Not a proof that this measurement is optimal. "
101: Quick Review

- Unambiguous State Discrimination
 - Trace distance
 \[D = \frac{1}{2} \| p - \sigma \|_1, \quad \| A \|_1 = \text{tr} \sqrt{A^2} \]

- Fidelity:
 \[F = \| p^\phi \sigma^\phi \|_1 = \| \text{tr} \sqrt{p^\phi \sigma^\phi} \|_1 \]

 \[1 - F \leq D \leq \sqrt{1 - F^2} \]

 Erroratum

- QEC criteria:

 Given a "codeword" \(C \) spanned by \(k \) n-qubit states \(| \bar{i} \rangle \), \(i = 0, \ldots, k-1 \) and

 \[E = \sum E_a \bar{s} \leq e = \sum N_a | \sum N_a \bar{s} = I \]

 and not three preserving

 \[\sum E_a \bar{s} \]

 \[\sum E_a \bar{s} \]

 Notation: \(C \) is an \([n, k, \ell] \) code (for \(E \))
Important special case:

\[\mathcal{E} \mathcal{E}_x^3 = \mathcal{E} \text{ Pauli tensor products with weight } \leq 6 \]

e.g., \(\text{pw}(-11122) = 4 \)
\(\text{pw}(1111) = 0 \)

Def: An \(n, k, \mathcal{E} \) code for \(\mathcal{E} = \mathcal{E}_x \), 1 \(\text{pw} (\mathcal{E}_k) \leq 6 \) is called an \(\mathcal{E}_x, k, 2t+1 \) code.

\[n = \text{length of the code} \]
\[d = 2t+1 = \text{distance of the code} = \min \text{pw}(\text{Pauli op taking one column to differ}) \]

\[\frac{1}{n} = \text{rate of the code} \]

\[\frac{1}{n} = \text{rate of the code} \]

\[\text{Good code: } \lim_{n \to \infty} \frac{k}{n} > 0, \lim_{n \to \infty} \frac{d}{n} > 0 \]

Meaning of GEC criteria:

1. \(E_a \) on \(\uparrow \uparrow \) distinguishable from \(E_b \) on \(\downarrow \downarrow \):

\[\langle \uparrow \downarrow | E_a^+ E_b^- \uparrow \downarrow \rangle = 0 \text{ if } i \neq j \]

2. Errors don't distinguish codewords:

\[\langle \uparrow \downarrow | E_a^+ E_b^- | \uparrow \downarrow \rangle = \langle \downarrow \uparrow | E_a^+ E_b^- | \downarrow \uparrow \rangle \]
QEC Features:

If each error \(E_a \) maps codespace \(S_o \) to an orthogonal space \(S_o' \), then \(C_{ab} = S_{ab} \) and code is non-degenerate

\[E = \{ E_{x_1}, E_{x_2}, E_{y_3} \} \]

Note: I don't know how to flip an error. Fix some error occurred.

\[C_o = \text{span}(1000, 1111) \]
\[C_1 = \text{span}(1001, 1110) \]
\[C_2 = \text{span}(1010, 1101) \]
\[C_3 = \text{span}(1100, 1011) \]

Otherwise, \(C_{ab} \) does not have maximum rank (it is singular), and code is degenerate.

\[\text{E.g. } \text{Shor code } \begin{pmatrix} 10 \end{pmatrix} = \left(\frac{1}{\sqrt{2}} \right)^3 \begin{pmatrix} 1000 & 1111 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}^3 \]
\[\begin{pmatrix} 1 \end{pmatrix} = \left(\frac{1}{\sqrt{2}} \right)^3 \begin{pmatrix} 1000 & 1111 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}^3 \]

Will show later that \(E_1, E_2 \) resolvable \(\Rightarrow \) any linear combo of \(E_1, E_2 \) resolvable. So \(2 + 2 \leq n \)

Got this far:

\[\langle \overline{0} | (Z_1 - Z_2) + (Z_1 - Z_2) | 10 \rangle = 0 \neq 1 \]

Quantum Hamming Bound:

Let \([n, k, 2^{t+1}] \) be a non-degenerate code,

\(\binom{n}{j} \) places where \(j \) errors can occur

Each place has 3 Pauli errors: \(X, Y, Z \)

\[\sum_{j=0}^{t} \binom{n}{j} 3^j t_{\leq j+1} \text{ errors} \]

Each error space holds \(k \) qubits: \(\dim = 2^k \)