
UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 1, Fall 2007

1.1 Pgate mania

• (a) Matrix Representation of Irreversible Pgates A gate just represents a func-
tion that takes in n pbits and spits out m pbits, f : Bn → Bm which in turn can be
represented as a 2m × 2n matrix. Since the irreversible versions of AND and OR take
in n = 2 pbits and spit out m = 1 pbit, the representative matrices must be 2 × 4.
Similarly, the FANOUT gate takes in n = 1 pbit and spits out m = 2 pbits, indicating
a 4× 2 matrix.

– AND [
1 1 1 0
0 0 0 1

]
– OR [

1 0 0 0
0 1 1 1

]
– FANOUT 

1 0
0 0
0 0
0 1


Reversibility Conditions In order for a gate to be reversible, we know that we
must be able to uniquely determine the input given an output. This further implies
that a reversible pgate on n pbits must output n pbits, otherwise we would not have
enough labels to uniquely map the outputs to the inputs. Pgates which satisfy these
constraints are permutations. As mentioned in Lecture 1, permutation matrices have a
single 1 in each row and column. Many of you were on the right trail, mentioning that
the matrix representation must have an inverse that is a stochastic matrix. However,
naming permutations explicitly was the desired answer (and was discussed in lecture
1).

• (b) Fredkin and Toffoli Gates I will use the following notation for this question.
The product of two boolean variables (xy), represents the logical AND operation. The
sum of two boolean variables (x + y) represents the logical OR operation. The NOT
of a variable is represented as x. XOR, or addition modulo 2, is still represented as
x⊕ y. The truth table for the Fredkin gate is

1



x y z x′ y′ z′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

The truth Table for the Toffoli gate is given in the lecture notes. As maps, we see that
the Fredkin map is FRED(x, y, z) 7→ (x, (xy)⊕ (xz), (xz)⊕ (xy)) and the Toffoli map
is TOFF(x, y, z) 7→ (x, y, z ⊕ (xy)).

In both cases, the minimum number of gates required to simulate the other is 4. A
proof of such a minimum requires exhaustively demonstrating that 1, 2 or 3 gates
is insufficient to achieve the simulation. Such a proof is omitted here and was not
required for credit. Unfortunately, intuition seems to be the best alternative to finding
the minimum number of gates and the related circuit.

– i. Fredkin simulates Toffoli. We first explore some of the features of the Fredkin
gate. Generally, we write the gate as

x • x
y × (xy)⊕ (xz)
z × (xz)⊕ (xy)

For particular choices of ancilla, we find

1. FANOUT/NOT
x • x

0 × x

1 × x
2. AND

x • x
y × xy

0 × xy
In terms of our desired output, we see that the first two inputs are trivially
mapped (aside from any possibly FANOUTs needed). The third output requires
combining xy with z:

xy • xy

z × z ⊕ (xy)

z × z ⊕ (xy)
Combining these steps gives the following circuit, (with relevant intermediary
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outputs labeled):
x •

x x

y •
y y

z •
z

0 ×
y

×

1 ×
y

0 ×
xy

•

0 ×
z

×
z ⊕ (xy)

1 ×
z

×
– ii. Toffoli simulates Fredkin. We write the Toffoli gate as

x • x
y • y

z �������� z ⊕ (xy)

Relevant properties of the Toffoli gate are

1. FANOUT
x • x

1 • 1

0 �������� x

2. XOR/CNOT

1 • 1
x • x

y �������� x⊕ y

We also need to recognize that the Fredkin map can be equivalently written as
FRED(x, y, z) 7→ (x, x(y ⊕ z) ⊕ y), x(y ⊕ z) ⊕ z. This can be intuitively seen by
noticing that if the control bit x is not set, the outputs are unchanged. If x is
set, the outputs are swapped using the fabled XOR swap trick. Combining these
results, we write the complete circuit (with relevant intermediary ouputs labeled):

x •
x

•
x

y •
y ��������x(y ⊕ z)⊕ y

z •
z �������� y ⊕ z

•
y ⊕ z

•

1 •
1

•

0 �������� z ��������x(y ⊕ z)⊕ z
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• (c) (i) Pdits and Pdit Gates Let D = {0, 1, . . . , d − 1} represent the d values a
pdit takes on (analogous to B for pbits). For gates that act on two qubits, the basis
is labeled by D⊗D = {0⊗ 0, 0⊗ 1, 0⊗ 2 . . . , 1⊗ 0, . . . (d− 1)⊗ (d− 1)}, which gives
d2 distinct labels. Therefore, CSUM, which takes 2 pdits, will be represented by a
matrix of size d2×d2. However, under the map (i, j) 7→ (i, i⊕ j), i remains unchanged,
indicating a block diagonal structure for the matrix. Let Ci represent the i-th block of
the entire CSUM matrix: 

C1 0 · · · 0
0 C2 · · · 0

0 0
. . . 0

0 0 0 Cd


Within the C0 block, we see the output is simply the identity. In the C1 block, the
output is 1 ⊕ j, so that {0 7→ 1, 1 7→ 2, . . . , (d − 2) 7→ d, (d − 1) 7→ 0. This is just a
single permutation or “cycle” of the basis states. Further consideration reveals that
each successive block is the next cycle. Explictly:

– CSUM, d = 3.

C0 =

1 0 0
0 1 0
0 0 1


C1 =

0 0 1
1 0 0
0 1 0


C2 =

0 1 0
0 0 1
1 0 0


– CSUM, d = 4.

C0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



C1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



C2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



C3 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


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(ii) Inverses Since the matrix is block diagonal, each block can be inverted separately.
The inverse of a cycle is just cycling the other way! We see then that

– d = 3,

CSUM−1 =

C0 0 0
0 C2 0
0 0 C1


– d = 4,

CSUM−1 =


C0 0 0 0
0 C3 0 0
0 0 C2 0
0 0 0 C1


1.2 Something Is Rotten in the State of Denmark

Let p(b) denote the probability that Hamlet is drawing from the pocket containing coins
with bias b ∈ {H, T}. Let p(b|i) denote the probability that Hamlet decides the pocket has
bias b given that his flip yields outcome i. Let p(i|b) denote the probability that outcome i
will be observed if he flips the coin with bias b. Let π(b) denote Hamlet’s prior probability
assesment that he has chosen the pocket with bias b.

Bayes’ rule tells us that

p(b|i) =
π(b)p(i|b)

p(i)
. (1)

Hamlet’s decision procedure (called the Bayes’ decision method in the literature) has the
feature that when outcome i is obtained, the probability of a correct decision is the maximum
of p(H|i) and p(T |i). In other words, his probability of error is

Pe =
∑

i

p(i) (1−max{p(H|i), p(T |i)}) (2)

=
∑

i

p(i) min{p(H|i), p(T |i)} (3)

=
∑

i

min{π(H)p(i|H), π(T )p(i|T )}, (4)

where Bayes’ rule was used in the last step.

From the details of the problem, we have

π(H) = π(T ) = 1/2 (5)

and

p(i|H) = pi, p(i|T ) = qi, (6)
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where

~p :=

[
0.9

0.1

]
, ~q :=

[
0

1

]
(7)

in part (a) and

~p :=

[
0.96

0.04

]
, ~q :=

[
0.04

0.96

]
(8)

in part (b).

Plugging in these values we get for part (a),

Pe(1 flip) =
1

2
min{0.9, 0}+

1

2
min{0.1, 1} = 0.05. (9)

and for part (b),

Pe(1 flip) =
1

2
min{0.96, 0.04}+

1

2
min{0.04, 0.96} = 0.04. (10)

Therefore, according to this measure, the pbits in part (b) are more distinguishable than
the pbits in part (a).

The extension to a two-flip test follows in the same framework, only now there are four
outcomes to consider. For part (c) we have

Pe(2 flips) =
1

2
min{0.9× 0.9, 0× 0}+

1

2
min{0.9× 0.1, 0× 1} (11)

+
1

2
min{0.1× 0.9, 1× 0}+

1

2
min{0.1× 0.1, 1× 1} (12)

= 0.005, (13)

and for part (d) we have

Pe(2 flips) =
1

2
min{0.96× 0.96, 0.04× 0.04}+

1

2
min{0.96× 0.04, 0.04× 0.96} (14)

+
1

2
min{0.04× 0.96, 0.96× 0.04}+

1

2
min{0.04× 0.04, 0.96× 0.96} (15)

= 0.04. (16)

After this two-coin flip test, the pair of coins from part (a) are ten times more distinguish-
able according to this measure, yet the coins from part (b) are no more distinguishable than
before. Evidently, this measure is not one that amplifies well under further data acquisition.
So while this measure has a good operational motivation, it’s not so great at assessing how
distinguishable pbits ~p and ~q are without specifying an exact number of samplings.

A (possibly) deeper understanding is provided by noting that the part (b) coins are
symmetric in probability, whereas those in part (a) are not. Since Hamlet’s prior does not
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prefer one coin type to another, additional flips of the symmetric coins do not help amplify
the results of a single flip, because the outcome probabilities for multiple flips maintain the
symmetry. When summing over the possible flip outcomes i, we add together “symmetric
probability pairs” (so flipping tails-tails with the heads-biased coin contributes the same
amount to the probability of error as flipping heads-heads with the tails-biased coin). In
short, the coins of part (b) result in errors in the same way, whereas those in part (a) do not.

1.3 So teach, when’s the homework due?

For this question, assume that our pdit is given by

~p :=

pF

pP

pN


• (a) Let ~pn represent your state of knowledge at week n. The probablity of having a

full assignment for week n is P (Fn) = (pF )n, the first entry of the vector. In order to
update our state of knowledge for week n + 1, we have P (Fn+1) = P (Fn+1|Fn)P (Fn) +
P (Fn+1|Pn)P (Pn) + P (Fn+1|Nn)P (Nn). We can write similar equations for Nn+1 and
Pn+1. The graph given in the assignment represents the conditional probabilities in the
equations, where each inward arrow represents the probablity to be where the arrow’s
head is at week n + 1 given that you were at the tail location at week n. The full P
matrix applied to ~pn updates to ~pn+1 using these rules and each row in P represents
the inward arrows for that state in the graph.

P =

0.40 0.45 0.80
0.35 0.40 0.15
0.25 0.15 0.05


You can easily verify that this is a stochastic matrix

• (b) To find the probabilities two weeks from now, we apply the P matrix in series:

~p2 = P 2~p0

=

 0.4 0.45 0.8
0.35 0.4 0.15
0.25 0.15 0.05

2 0
0
1


≈

0.43
0.35
0.22


There is a 43% chance of having a full assignment in two weeks, given that there is no
assignment this week.

• (c) Considering the results of part (b), we see that the matrix P 2 maps pdits at week
0 to pdits at week 2. As P13 represents the conditional probability P (F1| N0), P 2

13
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represents the conditional probability P (F2| N0). We will now use these conditional
probabilities between weeks 2 and 0 with Bayes rule to find P (N0|F2). Since we have
no information about the past, we take our vector of priors to be ~p0 = [1/3, 1/3, 1/3]T .

P (N0| F2) =
P (F2| N0)P (N0)

P (F2)
=

P (F2| N0)P (N0)

P (F2|N0)P (N0) + P (F2|P0)P (P0) + P (F2|N0)P (N0)
≈ 0.30

For the remaining parts of the question, it will be useful to diagonalize the P matrix. Recall
from linear algebra that the process of diagonalization involves finding a matrix V such
that D = V −1PV is diagonal. In this representation, V is a matrix whose columns are
the eigenvectors of P and Dii = λi, where λi is the i-th eigenvalue. Using MATLAB’s eig

command, we find that P has eigenvalues 1,−0.26, 0.11 and a corresponding V matrix:−0.7922 −0.8099 0.5445
−0.5354 0.3153 −0.7992
−0.2930 0.4946 0.2547


where each column in V corresponds to the the first, second and third eigenvalue respectively.
Using the diagonal form of a matrix is useful for computer powers of that matrix, as

P n = PPP · · ·PP = PV V −1PV V −1PV · · ·V −1P = V (V −1PV )nV −1 = V DnV −1

and calculating Dn requires simply raising each diagonal entry to the power n.

• (d) Using the above, we calculate ~p16 = V D16V −1~p0 and find ~p16 = [.49 .33 .18]T , so
the probability of a partial assignment in 16 weeks is 0.33.

• (e) An invariant pdit state ~π satisfies ~π = P~π and is thus simply the +1 eigenvalue
of P . Looking at our results above, we see that this is the first column in V . Since
eigenvalues are defined up to a constant, we can renormalize that column so that it
represents a valid pdit state to find ~π = [.49 .33 .18]T .

• (f) The results of parts (d) and (e) suggest that ~π, the +1 eigenvector, is related to the
convergent gate. Using the diagonal form, we have that (Dn)ii = (Dii)

n. For λi < 1,
(λi)

n → 0 as n →∞, but 1n = 1 for all n. So as n goes to infinity, D just becomes the
matrix

D∞ =

1 0 0
0 0 0
0 0 0


So that

P∞ = V D∞V −1 =

.49 .49 .49
.33 .33 .33
.18 .18 .18


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