
UNM Physics 452/581: Introduction to Quantum Information,
Problem Set 2, Fall 2007

Instructor: Dr. Landahl
Issued: September 4, 2007
Due: September 11, 2007

Do all of the problems listed below. Hand in your problem set at the beginning of class on
the desk at the front of the classroom or after class in the box in the Physics and Astronomy
main office by 5 p.m. Please put your name and/or IQI number number on your
assignment, as well as the course number (Physics 452/581). Please show all your work
and write clearly. Credit will be awarded for clear explanations as much, if not more so,
than numerical answers. Avoid the temptation to simply write down an equation and move
symbols around or plug in numbers. Explain what you are doing, draw pictures, and check
your results using common sense, limits, and/or dimensional analysis.

2.1. The Bourne Entanglement

On a quest to discover more about his mysterious origins, superspy Jason Bourne breaks
into NSA headquarters to find answers. There he finds secret files indicating that the ultimate
purposes of Operations Blackbriar and Treadstone that trained him to be an über-assassin
were to protect the secrets of Operation Quantum. After engaging in many car chases and
kung-fu fights across the globe, Bourne discovers the secret of Operation Quantum: the US
government has prepared an enormous cache of entangled qubits, putting it light-years ahead
of foreign governments who are just beginning to develop advanced quantum information
technology. Each pair of entangled qubits the US government has are in the state

1√
2

(|00〉+ |11〉).

Bourne picks up a pocketful of these entangled qubits from their secret hiding location
and escapes—undetected, naturally.

(a) Bourne decides to test the entangled qubits he has. He decides to do a measurement
that has four outcomes: | + +〉, | + −〉, | − +〉, or | − −〉. What is the probability that he
will obtain each of these outcomes? (Hint : Use the Born rule, of course.)

(b) Bourne decides to express these states in a new basis—the eigenstates of the operator

σθ := Z cos θ +X sin θ.

What are the eigenstates |0θ〉 and |1θ〉 of σθ? Use a labeling convention such that |0θ=0〉 = |0〉
and |1θ=0〉 = |1〉.

(c) Verify that no matter what θ Bourne chooses, the entangled qubits he has will look
essentially the same. In other words, verify that for all θ, the following is true:

1√
2

(|00〉+ |11〉) =
1√
2

(|0θ0θ〉+ |1θ1θ〉).

1



(d) Bourne decides to do some more testing on these qubits. This time, he does a
measurement in which he measures the first qubit of the pair in the {|0〉, |1〉} basis and the
second qubit of the pair in the {|0θ〉, |1θ〉} basis. Show that the probabilities of the various
outcomes he obtains are given by

Prob(|00θ〉) = Prob(|11θ〉) =
1

2
cos2 θ

2

Prob(|01θ〉) = Prob(|10θ〉) =
1

2
sin2 θ

2
.

2.2. You don’t know Jacques!

The Hadamard gate, named for mathematician Jacques Hadamard (1865–1963), is fre-
quently employed in quantum algorithms. In the computational basis, it is the matrix

H :=
1√
2

[
1 1
1 −1

]
.

In this problem, we explore this gate from many different vantage points.

(a) Calculate H†, H†H, H2, detH, and trH.

(b) Calculate the eigenvalues and eigenvectors of H.

(c) Express H as a linear combination of Pauli matrices.

(d) For each Pauli matrix A, report the matrix B such that HA = BH.

(e) Calculate U(n̂, π), where n̂ = (x̂+ ẑ)/
√

2. How does this compare to H?

(f) Calculate U(ẑ, π/2)U(x̂, π/2)U(ẑ, π/2). How does this matrix compare to H?

(g) The Walsh-Hadamard transform is the n-bit gate

UWH :=
1

2n/2

2n−1∑
j,k=0

(−1)j·k|j〉〈k|,

where j · k denotes the bitwise inner product

(j0, . . . , jn−1) · (k0, . . . , kn−1) := j0k0 ⊕ · · · ⊕ jn−1kn−1

Show that UWH = H⊗n. This is called a product representation of the transform.

(h) Let Π := 2|0〉〈0| − I, where I denotes the identity on n qubits and |0〉 denotes the
n-qubit state |00 . . . 0〉. Show that

H⊗nΠH⊗n = 2|s〉〈s| − I,

where |s〉 is defined as

|s〉 :=
1

2n/2

2n−1∑
j=0

|j〉.
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(i) Let Xa and Za denote the n-qubit gates defined as

Xa :=
2n−1∑
j=0

|j ⊕ a〉〈j|, Za :=
2n−1∑
j=0

(−1)j·a|j〉〈j|,

where j · a denotes the bitwise inner product

(j0, . . . , jn−1) · (a0, . . . , an−1) := j0a0 ⊕ · · · ⊕ jn−1an−1

and j ⊕ a denotes bitwise addition (modulo 2)

(j0, . . . , jn−1)⊕ (a0, . . . , an−1) := (j0 ⊕ a0, . . . jn−1 ⊕ an−1).

Show that H⊗nXaH
⊗n = Za. (Hint : Use the Walsh-Hadamard representation of H⊗n from

part (g), use the Kronecker delta δij to collapse sums, and use the property that the bitwise
dot product distributes over bitwise addition, i.e., that a · (b⊕ c) = (a · b)⊕ (a · c).)

2.3. The Price is Right: Royal Match

In an attempt to boost ratings, Drew Carey, new host of the daytime game show The
Price is Right has added a new game in which not one but two contestants have the chance to
win some money. The game is called Royal Match, and it works as follows. Each contestant
is given a card that says either “Match” or “No Match” on it. The audience gets to see what
both cards say, and each contestant can see what his or her card says, but each contestant
cannot see what the other contestant’s card says. Each contestant then has to choose one
of two cards he or she is going to display. One card is the King of Hearts, and the other
card is the Queen of Hearts. If both of their secret cards say “Match” and they reveal a
Royal Pair (King-Queen or Queen-King), then they each win $1,000. If one of the secret
cards says “No Match” and they don’t reveal a Royal Pair (i.e., they reveal King-King or
Queen-Queen), then they also each win $1,000. These are the only ways they can win; any
other combination yields no reward.

Statisticians for The Price is Right have determined that the best Royal Match strat-
egy will allow the pair of contestants to win 75% of the time. The space of strategies the
statisticians considered allows for maximal collusion between the contestants, including pre-
arranging their strategy and sharing correlated bits and pbits, but not cheating by informing
the other contestant of the secret card’s value. The statisticians used this expected winning
percentage to set the game’s cash value—advertising revenue allows the show to spend an
average of $1,500 per Royal Match game and still be profitable.

(a) Describe a strategy that allows the contestants to win Royal Match 75% of the time.

Years go by and Royal Match turns out to be a big hit. Curiously, the accountants
at The Price is Right discover that they are paying out an average of $1,707 per game.
Although this might be a statistical fluke, this game has been played so many times that
the accountants suspect that something else is up. They hire you as a consultant to dig up
the truth. Reaching back to the wisdom you gained from your Introduction to Quantum
Information class, you suspect that the parties are using entangled quantum states somehow.
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After some tedious calculations, you arrive at the following possible strategy that the
contestants could be using. The two parties, call them Alice and Bob for definiteness, prior
to the game share an entangled qubit state between them of the following kind1:

1√
2

(|00〉+ |11〉).

To be concrete, suppose these are photonic qubits, having spin s = 1. (This concreteness
allows an interpretation of the phrase “rotate a qubit by an angle such-and-such” below.)
The strategy they undertake is as follows:

• If Alice receives “No Match,” she measures her qubit and if she gets a 0 she reveals a
King and if she gets a 1 she reveals a Queen.

• If Alice receives “Match,” she rotates her qubit by −π/8, then measures, and again if
she gets a 0 she reveals a King and if she gets a 1 she reveals a Queen.

• If Bob receives “No Match,” he measures his qubit and if he gets a 0 he reveals a King
and if he gets a 1 he reveals a Queen.

• If Bob receives “Match,” he rotates his qubit by π/8, then measures, and again if he
gets a 0 he reveals a King and if he gets a 1 he reveals a Queen.

(b) For each possible combination of “Match” and “No Match” cards that could be given
to Alice and Bob, calculate the probability that their strategy yields a win.

(c) Assuming that each possible assignment of “Match” and “No Match” cards is equiprob-
able, calculate the probability that that this strategy is successful. Show that it equals
roughly 80.18%, but give an exact analytic expression for the success probability.

Your analysis in this problem shows that quantum mechanics allows stronger cooperative
behavior than is possible classically. The two contestants can win with a higher success
probability than classical collusion allows, even though they are not communicating with
each other. For this reason, quantum mechanics is said to possess “stronger” correlations
than classical physics allows.

The careful reader will notice that 80.18% of $2,000 is only $1,604. So it seems that the
parties are colluding even more cleverly. How are they doing this? Continue on to the extra
credit problem if you want to find out more. . .

Extra Credit Problem

2.4 Royal Match, Take II

After learning of your results from problem 2.3, the show’s statisticians want to readjust
the prize amounts so that once again an average of $1,500 per Royal Match game is awarded.

1Perhaps they got them from Jason Bourne. See problem 2.1.
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(What a bunch of cheapskates!) The statisticians want to be sure that there isn’t some better
quantum protocol than the one you told them that yields an even higher success probability—
they are pretty suspicious that there is one given the gap between the average $1,604 payoff
your strategy gives vs. the average $1,707 they are paying out per game. You are hired again
as a consultant to determine what the best possible quantum strategy for this game is.

You come up with the following:

• If Alice receives “No Match,” she measures her qubit and if she gets a 0 she reveals a
King and if she gets a 1 she reveals a Queen.

• If Alice receives “Match,” she rotates her qubit by π/4, then measures, and again if
she gets a 0 she reveals a King and if she gets a 1 she reveals a Queen.

• If Bob receives “No Match,” he rotates his qubit by π/8, then measures his qubit, and
if he gets a 0 he reveals a King and if he gets a 1 he reveals a Queen.

• If Bob receives “Match,” he rotates his qubit by −π/8, then measures, and again if he
gets a 0 he reveals a King and if he gets a 1 he reveals a Queen.

(a) For each possible combination of “Match” and “No Match” cards that could be given
to Alice and Bob, calculate the probability that their strategy yields a win.

(b) Assuming that each possible assignment of “Match” and “No Match” cards is equiprob-
able, calculate the probability that that this strategy is successful. Show that it equals
roughly 85.35%, but give an exact analytic expression for the success probability. (Note that
85.35% of $2,000 yields the $1,707 figure the show’s accountants are observing—the show’s
contestants are apparently quite clever.)

It turns out that this is the optimal strategy for this game. Convincing the show’s
statisticians that there is no better quantum strategy is a task even beyond the scope of
an extra credit problem for this class. (Although I seriously considered it.) The usual
argument involves proving something called Tsirel’son’s (or Cirel’son’s) Inequality, which
requires knowledge of quantum observable theory and sup-norm theory, neither of which we
have discussed. A proof that the most general classical strategy can’t win more than 75% of
the time as shown in part (a) involves proving something called Bell’s inequality, which is a
bit easier to do, but also omitted as an explicit problem. Quantum strategies that win this
game more than 75% of the time, such as those described in problems 2.3 and 2.4 are called
“Bell inequality violating” in the quantum mechanics literature.

The Wikipedia entry for Tsirel’son’s inequality is currently in awful shape. For those
interested in learning more about this subject, radically improving this entry would make
an excellent Wikipedia project.
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