UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 2, Fall 2007

2.1 The Bourne Entanglement

e (a) Let [¢) = \%(|00) + |11)). Let II; represent a projector onto of the four outcomes.
From the Born rule, we have that the probability of obtaining the outcome 7 as p; =
(|IL;]¢). We can write further write IT; = |i)(i|, where |i) € {|++),|+—),| —+), | —
—)}, so that p; = |(|i)|*>. We first find the representation of the II; in terms of the
standard basis {|00), |01),]10),|11)}:

4 4) = 7<ro>+u>> 7<|o>+\1>> 5100) +[01) + 10) +]11))
)= 7<ro>+|1>> 7<ro> 1)) = 5(100) — [01) +]10) — 1)
|—+>=7<|o> 1) & 7<|o>+|1>> £ (00) + 01 — [10) — |11))
|——>=E<|o>—u>> 7<|o> 1)) = 5((00) — [o1) — 110 + 1)
1.
pes = (0] + 1) = %«om (1) 5(100) +01) + 10 + 1) = 3
2.
— (] + ) = %«om (1) 5(100) — 101) +[10) — [11))* = 0
3.
=l - P = \jﬁ«oow (115 (100) +]01) ~ [10) ~ 1) =0
4. 1 1 1
6] = =) = 1=((00] + (11 5((00) = [01) = 10) + [1)F = 5

e (b) In order to find the eigenstates, we work with the explicit matrix form of op:

. 1 0 0 1\ . cosf)  sinf
= Zcosl + Xsinf = (0 _1) cosf + (1 O) sinf = (sin@ —cos@)
The characteristic polynomial of this equation is
(cos® — N)(cos@ + \) +sin % = sin 0 + cos6? + A\ =0

So our eigenvalues are A\;; = +1, A1 = —1. We now find the associated eigenvectors
by looking at the nullspace of oy — \;I. First for A\ q:

I cosf —1 sin 6
o sin 6 —cosf —1

1



The unnormalized eigenvector is then [1, 1%][1030]@ For A\_;, we have:
cosf +1 sin 0
09+I_( sin ¢ —cost9+1)

The unnormalized eigenvector is then [1, —1=%61T

some half-angle formulas gives

. Normalizing and making use of

105) = [cos (6/2), sin (8/2)]" = cos g\o) + sin §\1>

6 6
[19) = [—sin (0/2), cos (9/2)]T = —sin 5]0} + cos §|1>
You can directly verify that for = 0 these simplify to |0), [1).

e (¢) We proceed by directly using the derivations
1 1 0 N 0 N
_2(|0909> + [1gly)) = E[(cos §|0> + sin §|1>)(cos §|O> + sin §|1>)
.0 0 .0 0
+ (—sm§|0)—|—cos §|1>)(—sm§|0>+cos §|1>)]

1 0 in g 0
_ E[cos? 5100) + %001) +110)) + sin® 7]11)
0 sin 0
. 2_ o
+ sin 2|00) 5
1
_ E(|00>+|11>) for all §

e (d) We proceed in an analogous manner to part (a).

(]01) + |10)) + cos® g]n)]

0 0 0 0
|00g) = |0) ® (cos §IO> + sin§|1>) = cos §|OO> + sin§]01>

|015) = |0) ® (— Sing\()) + cosgm) = —sin%]OO) + cos g]Ol)
[105) = |1) ® (cos%]()} +sing|1>) = Cosg|10> + sin%]ll)

0 0 0 0
111) = 1) ® (— sin§|0) - cos§|1>) = —sin§]10) + cos §|11)
Therefore

1.

1 [ 0 1 0
— 2 _ - — 1n — 2 = — 2 —
Poo, = |(1]00g)|* = |\/§(<00| + (11])(cos 2|00> + sin 2|01>)| 5 cos 5

1 .0 0 1. 5,40
o = 1061016} * = | (001 + (11])(—sin 5100) +cos 5[01))* = 5 sin’ 5



1 0 0 1 0
P10, = [(¥[10)* = ’E(<00| + (11])(cos 5[10) +Sin§’11>)!2 = §Sin2 3
4.
1 0 0 1 0
Pty = (41110) 2 = | 7= ((00] + (1)) (—sin 5[10) + cos 5 1) = 5 cost
2.2 You don’t know Jacques!
For reference,
1 /1 1
=g )
e (a) Since H is real and symmetric, H' = H. Thefore H'H = H? =
1/ 1 1 1Y\ (1 0\ I
2\1 -1)\1 -1/ 0o 1) ™
det H=3(1x(~1)—1x1)=~landtr H = 55 — 5 = 0.
e (b) We see that H = 0,4, where 0y was the matrix we worked with in question
1 part (b). The eigenvalues are 1, with eigenvectors vi; = [cos %, sin£]" and,
v_y = [—sin %, cos Z]7.

e (c¢) By inspection, we see

1 1 0 01 1
-l 9 9]
e (d) The forms of Z and X are given in part (c¢) and
0 —i
()

For part (a) we know H? = I, so that HAH == B. Simply calculating, we find
HXH=/7 H/Z/H =X and HYH = -Y.

(e) Recall U(n,0) = e~/ = [ cos & —i(R - ) sin . For i = (& + 2)/v2 and 0 =,
we have

T4y | 1 LT 1
——,m)=1cos— —i(—,0,—) - (X,Y, Z)sin - = —1——

So up to a global phase, this is the same expression as we calculated in (c).

U( X+7Z)=—iH



e (f)
U, 7/2)U (&, 7/2)U (2, 7/2)

1 . 1
E([—zX)E
(I —iZ)(I —iX —iZ +iY)

(I —iZ) (I —iZ)

-l

s —iX —iZ Y —iZ =Y — 1 —iX)

—i—(X + Z) = —iH

V2

I

Again, we have our original H up to a global phase.

e (g) Lets first start by rewriting the single-qubit H in terms of the basis matrix elements.

1 /1 1 1 J
L L) = a0 o o - = S g

k,j=0

This matches Uy g for n = 1. We now generalize for N qubits

n—1 1
= (ﬁ

1=0

4 <—1>ﬁ’%|ki><ji|>

1

= ﬁ Zl: ZI: Z (_1)j0k0+j1k1+--.jn—1kn_1

ko,j0=0 k1,j1=0 kn—1,jn—1=0

X |ko) @ [kx) -~

2" —1

‘kn71><j0’<j1’ o <jn71|

= s 2 RG]

k,j=0

where in the final step, we have used the binary expansions of j, k (k = ko x 2° +
ky x 2V 4+ ...+ k,_12"!) and the definition of the bitwise inner product given in the
problem statement. If this seems mysterious, consider that as the individual sums over
ki, j; run over all values, the tensor product of kets and bras runs over all 2V binary
representations of those 2™ numbers. Try this with a small N to see how it works.



* (h)

2" —1 2" —1

HE'TIH®" = 2711/2 ;0( D™ |k) (] (2]0)(0] — I) 27}/2 lz_:o(—l)z~m|l)(m|

— zin Z_: (=DM (=1)"™ 21k} (10){0[7) (m] — k) {11} (m])
7,k,l,m=0

- = j (=1)9 (=1)"™ (28;00[k) (] — 641k) (m])

S 2n21 —1)0m2k) (| — Qi (=) *E™ k) (m]

2

k,m=0 k,j,m=0

— — Z S k) (M

— _ —2" Z k) (k

= 2ls)(s| =1

where k @ m is performed bitwise. Note that a @ a = 0, so that (—1)@®¥)7 = 1,
Conversely, if we fix k,m and vary j so that ¢ := k @ m, then Zj(—l)c'j =0 as
alternating j bitwise will result in an equal number of negative and positive terms.
Therefore, the sum over j gives the delta function as written.



2n—1 2" —1 2"-1
H®" X, H®" = = Z( a1k ( (E lg ® a) ) /2 E :(_1>l 1) (m)|

J,k=0 1,m=0
1 2" —1
= 5 X (VDI Gla © a) (gl (ml
7,k,q,l,m=0
1 3 A
= 5 > (UMD gwad(m]
7,k,q,l,m=0
1 2" —1
= 3 > (DM (ml
k,q,m=0
1 2n—1
= o 2 (CDMEDRU=D)T R (ml
k,q,m=0
1 on—1
= 50 2 (CDFEDEEk) )
k,q,m=0
2n—1
= 5 3 (DGl
km 0
2" —1
2" a
= S 2 (DRG]
k=0
p— Za

We have utilized properties derived in part (g) to collapse (—1)*®m)-4,

2.3 The Price is Right: Royal Match

e (a) Let P(M;) represent the probability of contestant i getting a “Match” card and
P(NM;) the probability of getting a “No Match card”. We assume that the the
assignment of cards is independent between contestants and equiprobable, so that
P(M,) = P(M,) = P(NM;) = P(NM,) = 5. There are 4 possible outcomes, but only
one is the “Match-Match” case. That means 75% of the time, at least one contestant
holds a “No Match” card. If the two contestants agree to always reveal the same card
(say King), then they will win 75% of the time.

e (b) Alice and Bob share one of Jason Bourne’s entangled qubits: ¢ = \%(|00> +[11)).
Before analyzing their probability of winning, we first recall that for spin 1 particles,
we have

U(f) =e ™ = Tcosh —iY sinf = (COSG — S 9)

sinf cos6



We also consider the action of iY" on the basis kets, noting that :Y'|0) = —|1) and
iY|1) = |0).

Let P(W|{(My, M), (My, NMy), (N My, My), (N M, NMs)}) represent the conditional

probability of winning given that the players receive the given cards.

1. P(W|NM,,NMy) =1

Alice and Bob both receive “No Match”, so a win will occur only if they both
reveal King or both reveal Queen. Alice and Bob have the same strategy when
they receive a “No Match” card—measure and reveal a King if they see a 0 and a
Queen if they see a 1. The probability they both measure 0 is given by the Born
rule: 1 ]

—(|00) + [11))]* = =

\/5(! )+ )P =5

A similar calculation shows that the probability the both measure 1 is also % and
there is 0 probability to measure 10 or 01. Thus Alice and Bob always measure
the same outcome, always reveal the same cards and will consequently always win

if they both receive “No Match” cards.

2. P(W|NM;y, M,) = cos*(%)

|{00]

Alice receives a “No Match” card and Bob receives a “Match” card. According
to their strategies, Bob will rotate his qubit by £ prior to measuring:
1
T U(Z):[[ T iI®Ysinty—

(0 ® 81#((}3)(3058z@slng)\/§

1
= > (cos gm()) + cos %\m +sin g]m) sin %\1o>)

After this rotation, Alice and Bob again have the same strategy—revealing King if
they measure 0 and Queen if they measure 1. Since Alice still has a “No Match”
card, a win occurs only if they reveal the same card. The probability they both
measure 0 is given by the Born rule and is just the modulus-squared of |00), which
is cos?*(%)/2. A similar calculation gives the same probability of getting |11) so
that the probability of winning in this case is cos*(%).

3. P(W|My, NM,) = cos*(%)

(100) +[11))

This case is very similar to the previous one. Now Alice receives a “Match” card
and Bob receives a “No Match” card. According to their strategies, Alice will
rotz.xte _‘Sler qubit by —% prior to measuring (recall cos(—x) = cosz and sin(—x) =
—sinx):

Y = U(—g)®I¢:(I®]Cosg+iY®]sinz)L(|00>+|11>)

8°V2

1
= 7 (COS%|00> + COS%|11> + sing|01> - sing|10>)
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After this rotation, Alice and Bob again have the same strategy—revealing King if
they measure 0 and Queen if they measure 1. Since Bob still has a “No Match”
card, a win occurs only if they reveal the same card. We see that ¢’ is the same
as the previous case, so the probability of winning is also the same—cos?(Z).

8
4. P(W‘Ml,Mz) - %

Alice and Bob both receive the “Match” card. According to their strategies, both
perform the rotations on their qubit, so that

¢ = D) ber @) (D er(D)s

= (Icos% —i—z’YSing) ® (Icosg — iYsing)Qp

= {[®ICOS2g+%Y®ISiDZ—%I®YsinZ+Y®Ysin2g}¢

[COS2 g(\00> +]11)) + ¥(|01> —110)) + Sﬂ;%uow —[10)) — sin? g(|00> +|11))

Sl

|
- [cos%|00>+cos%|11>+sin%|01) —sin%|10>]

S

[100) + [01) — |10) + [11)]

N | —

Since Alice and Bob reveal the same card type if they measure the same thing,
they will only reveal a “Royal Match” if they measure different things—|01) or
|10). Each outcome in this case is equally likely, so there is a probability of 1/2
of winning in this case.

e (¢) The probability of winning, given that the assignment of each card is equiprobable
is:
P(W) P(W|NMi, NMy)P(NM;, NMy)+ P(W|N M, My)P(N M, My)

+  P(W|My, NMy)P(My, NMy) + P(W|My, My) P(My, M)

= 1X1+COS27TX1+COSQ7TX1+ ><1
a 4 8 4 8 4 274
~ 80.18%

2.4 Extra Credit: Royal Match, Take 11

Given the similarity with the previous problem, the following solution will be less detailed.

* (a)
1. P(W|NMy, NM,) = cos® %



Prior to measuring, Bob will rotate his qubit by £:

7T) 1
8°v2
1

= 7 (cos g|00> + cos g|11> + sin g|01) — sin g|10>>
Since Alice and Bob reveal the same cards when they measure a 0 or 1, they will
now win if they measure bits with the same parity. Looking at the coefficients of
|00) and |11), we see that the probability of success is cos* Z

z.
2. P(W|NMy, M) = cos® §

P = ]®U<%>¢ (I®Icos§—zI®Ysm (100) + |11))

Prior to measuring, Bob will rotate his qubit by —g:

Y = I®U<—g>w (I®[cos§+zI®Ysm (00) + |11))

8)\/_
1
- % (Cos g|00> + cos g\m ~sin gym) + sin§\10>>

Since Alice and Bob reveal the same cards when they measure a 0 or 1, they will
now win if they measure bits with the same parity. Looking at the coefficients of
|00) and |11), we see that the probability of success is cos? Z

z
3. P(W|M;,NM,) = cos* %

Prior to measuring, Alice rotates her qubit by 7 and Bob will rotate his qubit by

™

E
Y = U(%) ®U<%>@Z): (Icos%—iYsin%) ® (Icos%—iYsin%)@/)

= I®]cos%cosg—iY®]sin%cosg—iI®YCOS%Sing—Y®Ysin%sing>
1

5 (100) +11))

S

[COSZCOS (|OO) +[11)) + singcosz(HO) —[01))

—i—coszsm (\Ol} —1]10)) — smzsm (\OO> +|11))]
1
- 3 (cos§|00> + cos§|11> - sin%]Ol) + sin§|10>>

Since Alice and Bob reveal the same cards when they measure a 0 or 1, they will
now win if they measure bits with the same parity. Looking at the coefficients of
|00) and |11), we see that the probability of success is cos? T

§.
4. P(W|My, Ms) = cos® &



Prior to measuring, Alice rotates her qubit by 7 and Bob will rotate his qubit by

.

g
o= U(z) ®U<—g)w: (Icos%—z’Ysin%) ® <[cosg+z'Ysin%)w
= ( ®Icos—cos§—2Y®Ismzcos§+zI®YcosZsm§+Y®Ysmzsm8)

(|00> +11))

Sl =Sl

[cos%cos—(|00) +[11)) + sin%cosz(ﬂ()) —[01))

—|—cos%sm (|10) — |01>)—sm%sm —(]00) 4 [11))]

1 3
v (cos §|00> + cos gm) — sin §|o1> +sin §|10>)
Since Alice and Bob reveal the same cards when they measure a 0 or 1, they
will now win if they measure bits with different parity (to get the royal match).

Looking at the coefficients of |01) and |10), we see that the probability of success
is sin® 3% = cos? .
e (c¢) The probability of winning, given that the assignment of each card is equiprobable
is:

P(W)

P(W|NM;, NMy)P(N My, NM,) + P(W|NM;, My)P(NM;, M)
P(W|My, NMy)P(My, NMy) + P(W|My, M) P(My, My)

1 T
4 2
4( cos 8)

85.36%

+

Q
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