
UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 3, Fall 2007

3.1 Quantum Safecracker

• (a) Recall that U(n̂, θ) = exp(−in̂ · ~σθ/2) = I cos θ
2
− in̂ · (X,Y, Z) sin θ

2
. Since gates

are equivalent up to a global phase, we can immediately see that U(x̂, π) = −iX ≡ X,
U(ŷ, π) = −iY ≡ Y , U(ẑ, π) = −iZ ≡ Z.

• (b) Recall the following Pauli properties: XY = iZ, Y Z = iX, ZX = iY . Swapping
the order of multiplication results in a negative sign.

– (i) First rotate about x̂, then about ŷ.

U(ŷ,
π

2
)U(x̂,

π

2
) = (I cos

π

4
− iY sin

π

4
)(I cos

π

4
− iX sin

π

4
) (1)

= I cos2 π

4
− iX cos

π

4
sin

π

4
− iY sin

π

4
cos

π

4
− Y X sin2 π

4
(2)

=
1

2
(I − iX − iY + iZ) (3)

=
1

2

(
1 + i −(1 + i)
1− i 1− i

)
(4)

=
1√
2

(
ei π

4 −ei π
4

ei 7π
4 ei 7π

4

)
(5)

=
ei π

4

√
2

(
1 −1
−i −i

)
(6)

– (ii) Looking at Eq. (3), we notice it has a very similar form to the general decompo-
sition of a rotation at the beginning of part (a), with ~n = (1, 1,−1). Normalizing,
we have n̂ = 1√

3
(1, 1,−1), implying θ = 2π

3
to give the desired result.

• (c) Since we are assuming ε is infinitesimal, we can do a Taylor expansion of the matrix
exponential, keeping the first three terms:

exp
(
−in̂ · ~σ ε

2

)
≈ I − in̂ · ~σ ε

2
− (n̂ · ~σ)2 ε

2

8
= I − in̂ · ~σ ε

2
− ε2

8
I (7)

utilizing the fact that (n̂ · ~σ)2 = 1.
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– (i) Overall, the rotation is (dropping terms of order ε3 or higher):

U(ŷ,−ε)U(x̂,−ε)U(ŷ, ε)U(x̂, ε) = (I +
iε

2
Y − ε2

8
I)(I +

iε

2
X − ε2

8
I) (8)

× (I − iε

2
Y − ε2

8
I)(I − iε

2
X − ε2

8
I) (9)

=

(
I +

iε

2
Y +

iε

2
X − ε2

4
I − ε2

4
Y X

)
(10)

×
(
I − iε

2
Y − iε

2
X − ε2

4
I − ε2

4
Y X

)
(11)

= I +
iε

2
Y +

iε

2
X − iε

2
Y − iε

2
X − ε2

2
− ε2

2
Y X

(12)

+
ε2

4
(X2 + Y 2) +

ε2

4
(XY + Y X) (13)

= I − ε2

2
Y X (14)

= I + i
ε2

2
Z (15)

– (iii) Comparing to the general taylor series expansion, this is U(−ẑ, ε2).

• (d)

– (i) We have:

U(
1√
3
(x̂+ ŷ + ẑ),

2π

3
) = I cos

π

3
− i sin

π

3

1√
3
(X + Y + Z) (16)

=
1

2
(I − iX − iY − iZ) (17)

=
1

2

(
1− i −(1 + i)
1− i 1 + i

)
(18)

(19)

– (ii) The spin up vectors are given by the +1 eigenvectors of the corresponding
Pauli matrices.

1. Spin up along X

1

2

(
1− i −(1 + i)
1− i 1 + i

)
1√
2

(
1
1

)
=

1√
2

(
−i
1

)
=
−i√

2

(
1
i

)
(20)

Up to a phase, this is spin up along Y .

2. Spin up along Y

1

2

(
1− i −(1 + i)
1− i 1 + i

)
1√
2

(
1
i

)
=

1√
2

(
1− i

0

)
= e−i π

4

(
1
0

)
(21)

Up to a phase, this is spin up along Z.
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3. Spin up along Z

1

2

(
1− i −(1 + i)
1− i 1 + i

)(
1
0

)
=

1

2

(
1− i
1− i

)
=
e−i π

4

√
2

(
1
1

)
(22)

Up to a phase, this is spin up along X.

– (c) Comparing Eq. (3) and Eq. (17), we see that the only difference is the sign of
the Z term, which came from simplifying the Y X term. Knowing that reversing
the order of multiplication of two Pauli matrices results in an overall minus sign,
we should try first rotating about ŷ then about x̂:

U(x̂,
π

2
)U(ŷ,

π

2
) = (I cos

π

4
− iX sin

π

4
)(I cos

π

4
− iY sin

π

4
) (23)

= I cos2 π

4
− iX cos

π

4
sin

π

4
− iY sin

π

4
cos

π

4
−XY sin2 π

4
(24)

=
1

2
(I − iX − iY − iZ) (25)

=
1

2
(I − i(1, 1, 1) · (X, Y, Z)) (26)

= I cos
π

3
− i√

3
(1, 1, 1) · (X, Y, Z) sin

π

3
(27)

So rotate by π
2

about ŷ, then π
2

about x̂ to open the safe.

3.2 Bloch sphere

• (a) Recall from class that any qubit state say can be written as |ψ〉 = cos θ
2
|0〉 +

eiφ sin θ
2
|1〉. Taking the explicit outer product:(
cos θ

2

eiφ sin θ
2

)(
cos θ

2
e−iφ sin θ

2

)
(28)

=

(
cos2 θ

2
e−iφ sin θ

2
cos θ

2

eiφ sin θ
2
cos θ

2
sin2 θ

2

)
(29)

=
1

2

(
1 + cos θ cosφ sin θ − i sinφ sin θ

cosφ sin θ + i sinφ sin θ 1− cos θ

)
(30)

=
1

2

[(
1 0
0 1

)
+ cosφ sin θ

(
0 1
1 0

)
+ sinφ sin θ

(
0 −i
i 0

)
+ cos θ

(
1 0
0 −1

)]
(31)

=
1

2
[I + (cosφ sin θ, sinφ sin θ, cos θ) · (X,Y, Z)] (32)

So ~p = (cosφ sin θ, sinφ sin θ, cos θ) and |~p| = cos2 φ sin2 θ + sin2 φ sin2 θ + cos2 θ =
sin2 θ + cos2 θ = 1.

• (b) Since U(n̂, θ) takes |ψ〉 to |ψ′〉, we have

1

2
(I + ~p′ · ~σ) = U(n̂, θ)

1

2
(I + ~p · ~σ)U †(n̂, θ) =

1

2
(I + U(n̂, θ)(~p · ~σ)U †(n̂, θ)) (33)
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Before continuing, we make note of the following identity (using Einstein summation
convention):

(~a · ~σ)(~b · ~σ) = aibjσiσj = aibj(Iδij + iεijkσk) = (~a ·~b) + i(~a×~b) · ~σ (34)

If you are unaccustomed to this notation, you can verify the identity by explicitly
calculating the left and right hand sides.

U(n̂, θ)(~p · ~σ)U †(n̂, θ) (35)

=

[
I cos

θ

2
− i sin

θ

2
(n̂ · ~σ)

]
(~p · ~σ)

[
I cos

θ

2
+ i sin

θ

2
(n̂ · ~σ)

]
(36)

=

[
I cos

θ

2
− i sin

θ

2
(n̂ · ~σ)

] [
cos

θ

2
(~p · ~σ) + i sin

θ

2
(~p · ~σ)(n̂ · ~σ)

]
(37)

=

[
I cos

θ

2
− i sin

θ

2
(n̂ · ~σ)

] [
cos

θ

2
(~p · ~σ) + i sin

θ

2
((~p · n̂)I + i(~p× n̂) · ~σ)

]
(38)

= cos2 θ

2
(~p · ~σ) + i sin

θ

2
cos

θ

2
((~p · n̂)I + i(~p× n̂) · ~σ) (39)

− i sin
θ

2
cos

θ

2
(n̂ · ~σ)(~p · ~σ) + sin2 θ

2
(n̂ · ~σ) ((~p · n̂)I + i(~p× n̂) · ~σ) (40)

= cos2 θ

2
(~p · ~σ) +

i

2
sin θ ((~p · n̂)I + i(~p× n̂) · ~σ)− i

2
sin θ ((~p · n̂)I − i(~p× n̂) · ~σ)

+ sin2 θ

2
[((~p · n̂)n̂ · ~σ) + i(n̂ · ~σ)((~p× n̂) · ~σ)] (41)

= cos2 θ

2
(~p · ~σ)− sin θ(~p× n̂) · ~σ + sin2 θ

2
((~p · n̂)n̂ · ~σ) (42)

+ i sin2 θ

2

 n̂ · (~p× n̂)︸ ︷︷ ︸
=0 since (~p×n̂)⊥n̂

+i(n̂× (~p× n̂)) · ~σ

 (43)

= cos2 θ

2
(~p · ~σ)− sin θ(~p× n̂) · ~σ + sin2 θ

2
((~p · n̂)n̂ · ~σ) (44)

− sin2 θ

2

~p (n̂ · n̂)︸ ︷︷ ︸
=1 since |n̂|2=1

−n̂(~p · n̂)

 · ~σ (45)

= cos2 θ

2
(~p · ~σ)− sin θ(~p× n̂) · ~σ − sin2 θ

2
(~p · ~σ) + 2 sin2 θ

2
(~p · n̂)(n̂ · ~σ) (46)

= cos θ(~p · ~σ) + sin θ(~̂n× ~p) · ~σ + (1− cos θ)(~p · n̂)(n̂ · ~σ) (47)

Since we are looking for something of the form ~p′ · ~σ we directly read off ~p′ = cos θ~p+
sin θ(n̂×~p)+(1−cos θ)(~p · n̂)n̂, which corresponds to rotating the vector p̃ by an angle
θ around the unit vector n̂. This has been written in the form of Rodrigues’ rotation
formula.

• (c) We will work in the z-basis, so that | ± x〉 = 1√
2
(|+ z〉 ± | − z〉) and | ± y〉 =

4

http://en.wikipedia.org/wiki/Rodrigues'_rotation_formula
http://en.wikipedia.org/wiki/Rodrigues'_rotation_formula


1√
2
(|+ z〉 ± i| − z〉). Given the problem statement, we have that

U | ± z〉 = eiθ
(±)
z | ∓ z〉 (48)

Using this in the definitions for the other two directions, we find

U | ± x〉 = eiθ
(±)
x | ± x〉 (49)

=
1√
2

[
eiθ

(±)
x |+ z〉 ± eiθ

(±)
x | − z〉

]
(50)

(51)

But we also have

U | ± x〉 = U
1√
2

[|+ z〉 ± | − z〉] (52)

=
1√
2

[
eiθ

(+)
z | − z〉 ± eiθ

(−)
z |+ z〉

]
(53)

=
1√
2

[
±eiθ

(−)
z |+ z〉+ eiθ

(+)
z | − z〉

]
(54)

Comparing coefficients we find

eiθ
(±)
x = ±eiθ

(−)
z (55)

eiθ
(±)
x = ±eiθ

(+)
z (56)

⇒ eiθ
(−)
z = eiθ

(+)
z (57)

For the y basis, we have

U | ± z〉 = eiθ
(±)
y | ± y〉 (58)

=
1√
2

[
eiθ

(±)
y |+ z〉 ± ieiθ

(±)
y | − z〉

]
(59)

(60)

But we also have

U | ± y〉 = U
1√
2

[|+ z〉 ± i| − z〉] (61)

=
1√
2

[
eiθ

(+)
z | − z〉 ± ieiθ

(−)
z |+ z〉

]
(62)

=
1√
2

[
±ieiθ

(−)
z |+ z〉+ eiθ

(+)
z | − z〉

]
(63)

Comparing coefficients we find

eiθ
(±)
y = ±ie−θ

(−)
z (64)

eiθ
(±)
y = ∓ie−θ

(+)
z (65)

⇒ e−θ
(−)
z = −e−θ

(+)
z (66)

There is no way to satisfy both Eq. (57) and Eq. (66) simultaneously.
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3.3 Simon Says

• (a) The Walsh-Hadamard transform is given by

UWH =
1

2n/2

2n−1∑
j,k=0

(−1)j·k|j〉〈k| (67)

Applying this to an initial state of the form |0〉⊗n gives

1

2n/2

2n−1∑
j,k=0

(−1)j·k|j〉〈k|0〉 =
1

2n/2

2n−1∑
j,k=0

(−1)j·k|j〉δk0 (68)

=
1

2n/2

2n−1∑
j=0

(−1)j·0|j〉 (69)

=
1

2n/2

2n−1∑
j=0

|j〉 (70)

which is a uniform superposition over all states.

• (b) Define the linear map Q := |i〉|j〉 7→ |i〉|j ⊕ xo〉. Then

Q

[(
1

2n/2

2n−1∑
i=0

|i〉

)
⊗ |0〉⊗n

]
= Q

[
1

2n/2

2n−1∑
i=0

(
|i〉 ⊗ |0〉⊗n

)]
(71)

=

[
1

2n/2

2n−1∑
i=0

Q
(
|i〉 ⊗ |0〉⊗n

)]
(72)

=
1

2n/2

2n−1∑
i=0

|i〉 ⊗ |xi〉 (73)

• (c) We now measure using the projectors Πj = I⊗n ⊗ |j〉〈j|, for j = 0, . . . , N − 1.
Consider the case where s = 0n. We have xi = xj if and only if i = j⊕0, which implies
that each xi is distinct. Since we are free to order this list in any way, let xi = i for
i = 0, . . . , N − 1. Our state at the end of part (a) is then

1

2n/2

2n−1∑
i=0

|i〉 ⊗ |i〉 (74)
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The probability of outcome j is given by

prob(j) =
1

2n/2

2n−1∑
i=0

〈i| ⊗ 〈i|Πj
1

2n/2

2n−1∑
k=0

|k〉 ⊗ |k〉 (75)

=
1

2n

2n−1∑
i,k=0

〈i| ⊗ 〈i|(I⊗n ⊗ |j〉〈j|)|k〉 ⊗ |k〉 (76)

=
1

2n

2n−1∑
i,k=0

〈i|k〉〈i|j〉〈j|k〉 (77)

=
1

2n

2n−1∑
i,k=0

δijk (78)

=
1

2n
(79)

where in the last step we used the fact that exactly one term in the sum has i = j and
k = j.

The post-measurement state is given by

ψ′ =
√

2nΠj
1

2n/2

2n−1∑
i=0

|i〉 ⊗ |i〉 (80)

=
2n−1∑
i=0

|i〉 ⊗ (|j〉〈j|i〉) (81)

= |j〉|j〉 (82)

= |j〉|xj〉 (83)

where in the last step we have generalized from our assumed definition that xj = j.

Now consider the case when s 6= 0n. We now have that xi = xj if and only if i = j ⊕ s
which implies xi = xi⊕s. Then exactly two |xi〉 terms are equal. The probability of
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measuring outcome j for this case is

prob(j) =
1

2n/2

2n−1∑
i=0

〈i| ⊗ 〈xi|Πj
1

2n/2

2n−1∑
k=0

|k〉 ⊗ |xk〉 (84)

=
1

2n

2n−1∑
i,k=0

(〈i| ⊗ 〈xi|)(I⊗n ⊗ |j〉〈j|)(|k〉 ⊗ |xk〉) (85)

=
1

2n

2n−1∑
i,k=0

〈i|k〉 ⊗ (〈xi|j〉〈j|xk〉) (86)

=
1

2n

2n−1∑
i,k=0

δik(〈xi|j〉〈j|xk〉) (87)

=
1

2n

2n−1∑
i

(〈xi|j〉〈j|xi〉) (88)

=
1

2n−1
(89)

where in the last step we have used the fact that 〈xi|j〉 is equal to one for exactly two
terms in the sum.

The post-measurement state is given by

ψ′ =
√

2n−1Πj
1

2n/2

2n−1∑
i=0

|i〉 ⊗ |xi〉 (90)

=
1√
2

2n−1∑
i=0

|i〉 ⊗ (|j〉〈j|xi〉) (91)

=
1√
2

2n−1∑
i=0

|i〉 ⊗ |j〉δj,xi
(92)

=
1√
2

(|j〉+ |j ⊕ s〉)⊗ |xj〉 (93)

where in the last step we have used the fact that xj = xj⊕s.

• (d) First consider the case when s = 0n. Applying another Walsh-Hadamard transform
gives

UWH |j〉|xj〉 =

[
1

2n/2

2n−1∑
i,k=0

(−1)i·k|i〉〈k|j〉

]
⊗ xj (94)

=

[
1

2n/2

2n−1∑
i,k=0

(−1)i·k|i〉δkj

]
⊗ xj (95)

=
1

2n/2

2n−1∑
i=0

(−1)i·j|i〉 ⊗ |xj〉 (96)
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Now consider the case when s 6= 0n.

UWH

[
1√
2

(|j〉+ |j ⊕ s〉)
]
⊗ |xj〉 (97)

=
1√
2

[UWH |j〉 ⊗ |xj〉+ UWH |j ⊕ s〉 ⊗ |xj〉] (98)

=
1

2n/2+1/2

[
2n−1∑
i=0

(−1)i·j|i〉 ⊗ |xj〉+
2n−1∑
i,k=0

(−1)i·k|i〉〈k|j ⊕ s〉 ⊗ |xj〉

]
(99)

=
1

2n/2+1/2

[
2n−1∑
i=0

(−1)i·j|i〉 ⊗ |xj〉+
2n−1∑
i,k=0

(−1)i·k|i〉δk,j⊕s ⊗ |xj〉

]
(100)

=
1

2n/2+1/2

[
2n−1∑
i=0

(−1)i·j|i〉 ⊗ |xj〉+
2n−1∑
i=0

(−1)i·(j⊕s)|i〉 ⊗ |xj〉

]
(101)

=
1

2n/2+1/2

2n−1∑
i=0

[
(−1)i·j + (−1)i·j(−1)i·s] |i〉 ⊗ |xj〉 (102)

=
1

2n/2+1/2

2n−1∑
i=0

(−1)i·j [
1 + (−1)i·s]︸ ︷︷ ︸

is 2 if i·s=0, else =0

|i〉 ⊗ |xj〉 (103)

=
1

2(n−1)/2

∑
i·s=0

(−1)i·j|i〉 ⊗ |xj〉 (104)

where the sum in the last line is over i that satisfy i · s = 0.

• (e) Looking at our worst case results in part (d), we notice that there is a uniform
(equal) probability of recovering a given index i. Clearly the first measurement will
yield an i0 that is linearly independent, since it is the only index we have so far. Using
this i0, we start to form a basis B, which is the span of {i0}, where we treat i0 as
a length n vector with entries 0 and 1. Measuring again, we get result i1. This will
be linearly independent of B if it is not equal to i0. The probability of this is the
probability of not measuring i0, which is just 1− 1

2n .

Generalizing, we see that at step m + 1, the probability that we measure an index
that is linearly independent from the span of the m previous independent vectors is
2n−2m

2n = 1 − 1
2m−n . To understand this expression, realize that from a linear algebra

perspective, we can interpret our basis of m vectors as spanning the first m entries of
an arbitrary vector. The only place a linearly independent vector can differ is in the
remaining m locations, indicating that of all the 2n possible bit strings, only 2n − 2m

are linearly independent from those we have already seen. The probability that the n
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equations are linearly independent is then

Pindependent =

(
1− 1

2

)
×
(

1− 1

4

)
× · · · ×

(
1− 1

2n−1

)
×
(

1− 1

2n

)
(105)

>

∞∏
k=1

(
1− 1

2k

)
(106)

>
1

4
(107)

where we have acheived a lower bound by adding terms. Since 1− 1
2n < 1 for all n, we

are guaranteed that the final expression is smaller than the actual form.

10


