UNM Physics 452/581: Introduction to Quantum Information, Solution Set 3, Fall 2007

3.1 Quantum Safecracker

- (a) Recall that $U(\hat{n}, \theta) = \exp(-i\hat{n} \cdot \vec{\sigma}\theta/2) = I \cos \frac{\theta}{2} i\hat{n} \cdot (X, Y, Z) \sin \frac{\theta}{2}$. Since gates are equivalent up to a global phase, we can immediately see that $U(\hat{x}, \pi) = -iX \equiv X$, $U(\hat{y}, \pi) = -iY \equiv Y$, $U(\hat{z}, \pi) = -iZ \equiv Z$.
- (b) Recall the following Pauli properties: XY = iZ, YZ = iX, ZX = iY. Swapping the order of multiplication results in a negative sign.
 - (i) First rotate about \hat{x} , then about \hat{y} .

$$U(\hat{y}, \frac{\pi}{2})U(\hat{x}, \frac{\pi}{2}) = (I\cos\frac{\pi}{4} - iY\sin\frac{\pi}{4})(I\cos\frac{\pi}{4} - iX\sin\frac{\pi}{4})$$
(1)

$$= I\cos^{2}\frac{\pi}{4} - iX\cos\frac{\pi}{4}\sin\frac{\pi}{4} - iY\sin\frac{\pi}{4}\cos\frac{\pi}{4} - YX\sin^{2}\frac{\pi}{4} \quad (2)$$

$$=\frac{1}{2}\left(I-iX-iY+iZ\right)\tag{3}$$

$$=\frac{1}{2} \begin{pmatrix} 1+i & -(1+i) \\ 1-i & 1-i \end{pmatrix}$$
(4)

$$=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\pi}{4}} & -e^{i\frac{\pi}{4}}\\ e^{i\frac{7\pi}{4}} & e^{i\frac{7\pi}{4}} \end{pmatrix}$$
(5)

$$=\frac{e^{i\frac{\pi}{4}}}{\sqrt{2}}\begin{pmatrix}1&-1\\-i&-i\end{pmatrix}\tag{6}$$

- (*ii*) Looking at Eq. (3), we notice it has a very similar form to the general decomposition of a rotation at the beginning of part (*a*), with $\vec{n} = (1, 1, -1)$. Normalizing, we have $\hat{n} = \frac{1}{\sqrt{3}}(1, 1, -1)$, implying $\theta = \frac{2\pi}{3}$ to give the desired result.
- (c) Since we are assuming ϵ is infinitesimal, we can do a Taylor expansion of the matrix exponential, keeping the first three terms:

$$\exp\left(-i\hat{n}\cdot\vec{\sigma}\frac{\epsilon}{2}\right) \approx I - i\hat{n}\cdot\vec{\sigma}\frac{\epsilon}{2} - (\hat{n}\cdot\vec{\sigma})^2\frac{\epsilon^2}{8} = I - i\hat{n}\cdot\vec{\sigma}\frac{\epsilon}{2} - \frac{\epsilon^2}{8}I \tag{7}$$

utilizing the fact that $(\hat{n} \cdot \vec{\sigma})^2 = 1$.

- (i) Overall, the rotation is (dropping terms of order ϵ^3 or higher):

$$U(\hat{y}, -\epsilon)U(\hat{x}, -\epsilon)U(\hat{y}, \epsilon)U(\hat{x}, \epsilon) = (I + \frac{i\epsilon}{2}Y - \frac{\epsilon^2}{8}I)(I + \frac{i\epsilon}{2}X - \frac{\epsilon^2}{8}I)$$
(8)

$$\times (I - \frac{i\epsilon}{2}Y - \frac{\epsilon^2}{8}I)(I - \frac{i\epsilon}{2}X - \frac{\epsilon^2}{8}I) \tag{9}$$

$$= \left(I + \frac{i\epsilon}{2}Y + \frac{i\epsilon}{2}X - \frac{\epsilon^2}{4}I - \frac{\epsilon^2}{4}YX\right)$$
(10)

$$\times \left(I - \frac{i\epsilon}{2}Y - \frac{i\epsilon}{2}X - \frac{\epsilon^2}{4}I - \frac{\epsilon^2}{4}YX \right) \tag{11}$$

$$= I + \frac{i\epsilon}{2}Y + \frac{i\epsilon}{2}X - \frac{i\epsilon}{2}Y - \frac{i\epsilon}{2}X - \frac{\epsilon^2}{2} - \frac{\epsilon^2}{2}YX$$
(12)

$$+\frac{\epsilon^{2}}{4}(X^{2}+Y^{2})+\frac{\epsilon^{2}}{4}(XY+YX)$$
(13)

$$=I - \frac{\epsilon^2}{2} Y X \tag{14}$$

$$=I+i\frac{\epsilon^2}{2}Z\tag{15}$$

- (*iii*) Comparing to the general taylor series expansion, this is $U(-\hat{z}, \epsilon^2)$.

• (d)

-(i) We have:

$$U(\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z}),\frac{2\pi}{3}) = I\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\frac{1}{\sqrt{3}}(X+Y+Z)$$
(16)

$$= \frac{1}{2}(I - iX - iY - iZ)$$
(17)

$$=\frac{1}{2} \begin{pmatrix} 1-i & -(1+i) \\ 1-i & 1+i \end{pmatrix}$$
(18)

(19)

- (ii) The spin up vectors are given by the +1 eigenvectors of the corresponding Pauli matrices.
 - 1. Spin up along X

$$\frac{1}{2} \begin{pmatrix} 1-i & -(1+i) \\ 1-i & 1+i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix} = \frac{-i}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
(20)

Up to a phase, this is spin up along Y.

2. Spin up along Y

$$\frac{1}{2} \begin{pmatrix} 1-i & -(1+i) \\ 1-i & 1+i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i \\ 0 \end{pmatrix} = e^{-i\frac{\pi}{4}} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(21)

Up to a phase, this is spin up along Z.

3. Spin up along Z

$$\frac{1}{2} \begin{pmatrix} 1-i & -(1+i) \\ 1-i & 1+i \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1-i \\ 1-i \end{pmatrix} = \frac{e^{-i\frac{\pi}{4}}}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
(22)

Up to a phase, this is spin up along X.

- (c) Comparing Eq. (3) and Eq. (17), we see that the only difference is the sign of the Z term, which came from simplifying the YX term. Knowing that reversing the order of multiplication of two Pauli matrices results in an overall minus sign, we should try first rotating about \hat{y} then about \hat{x} :

$$U(\hat{x}, \frac{\pi}{2})U(\hat{y}, \frac{\pi}{2}) = (I\cos\frac{\pi}{4} - iX\sin\frac{\pi}{4})(I\cos\frac{\pi}{4} - iY\sin\frac{\pi}{4})$$
(23)

$$= I\cos^{2}\frac{\pi}{4} - iX\cos\frac{\pi}{4}\sin\frac{\pi}{4} - iY\sin\frac{\pi}{4}\cos\frac{\pi}{4} - XY\sin^{2}\frac{\pi}{4} \quad (24)$$

$$=\frac{1}{2}(I - iX - iY - iZ)$$
(25)

$$=\frac{1}{2}(I - i(1, 1, 1) \cdot (X, Y, Z))$$
(26)

$$= I\cos\frac{\pi}{3} - \frac{i}{\sqrt{3}}(1,1,1) \cdot (X,Y,Z)\sin\frac{\pi}{3}$$
(27)

So rotate by $\frac{\pi}{2}$ about \hat{y} , then $\frac{\pi}{2}$ about \hat{x} to open the safe.

3.2 Bloch sphere

• (a) Recall from class that any qubit state say can be written as $|\psi\rangle = \cos \frac{\theta}{2}|0\rangle + e^{i\phi} \sin \frac{\theta}{2}|1\rangle$. Taking the explicit outer product:

$$\begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix} \left(\cos\frac{\theta}{2} \quad e^{-i\phi}\sin\frac{\theta}{2} \right)$$
(28)

$$= \begin{pmatrix} \cos^2 \frac{\theta}{2} & e^{-i\phi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix}$$
(29)

$$=\frac{1}{2}\begin{pmatrix}1+\cos\theta&\cos\phi\sin\theta-i\sin\phi\sin\theta\\\cos\phi\sin\theta+i\sin\phi\sin\theta&1-\cos\theta\end{pmatrix}$$
(30)

$$=\frac{1}{2}\left[\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix} + \cos\phi\sin\theta\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix} + \sin\phi\sin\theta\begin{pmatrix}0 & -i\\i & 0\end{pmatrix} + \cos\theta\begin{pmatrix}1 & 0\\0 & -1\end{pmatrix}\right]$$
(31)

$$= \frac{1}{2} \left[I + (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta) \cdot (X, Y, Z) \right]$$
(32)

So $\vec{\mathbf{p}} = (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta)$ and $|\vec{\mathbf{p}}| = \cos^2\phi\sin^2\theta + \sin^2\phi\sin^2\theta + \cos^2\theta = \sin^2\theta + \cos^2\theta = 1$.

• (b) Since $U(\hat{n}, \theta)$ takes $|\psi\rangle$ to $|\psi'\rangle$, we have

$$\frac{1}{2}(I + \vec{\mathbf{p}}' \cdot \vec{\sigma}) = U(\hat{n}, \theta) \frac{1}{2}(I + \vec{\mathbf{p}} \cdot \vec{\sigma}) U^{\dagger}(\hat{n}, \theta) = \frac{1}{2}(I + U(\hat{n}, \theta)(\vec{\mathbf{p}} \cdot \vec{\sigma}) U^{\dagger}(\hat{n}, \theta))$$
(33)

Before continuing, we make note of the following identity (using Einstein summation convention):

$$(\vec{a}\cdot\vec{\sigma})(\vec{b}\cdot\vec{\sigma}) = a_i b_j \sigma_i \sigma_j = a_i b_j (I\delta_{ij} + i\epsilon_{ijk}\sigma_k) = (\vec{a}\cdot\vec{b}) + i(\vec{a}\times\vec{b})\cdot\vec{\sigma}$$
(34)

If you are unaccustomed to this notation, you can verify the identity by explicitly calculating the left and right hand sides.

$$U(\hat{n},\theta)(\vec{\mathbf{p}}\cdot\vec{\sigma})U^{\dagger}(\hat{n},\theta)$$
(35)

$$= \left[I\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})\right](\vec{\mathbf{p}}\cdot\vec{\sigma})\left[I\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})\right]$$
(36)

$$= \left[I\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})\right] \left[\cos\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) + i\sin\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma})(\hat{n}\cdot\vec{\sigma})\right]$$
(37)

$$= \left[I\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})\right] \left[\cos\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) + i\sin\frac{\theta}{2}\left((\vec{\mathbf{p}}\cdot\hat{n})I + i(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma}\right)\right]$$
(38)

$$=\cos^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) + i\sin\frac{\theta}{2}\cos\frac{\theta}{2}\left((\vec{\mathbf{p}}\cdot\hat{n})I + i(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma}\right)$$
(39)

$$-i\sin\frac{\theta}{2}\cos\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})(\vec{\mathbf{p}}\cdot\vec{\sigma}) + \sin^2\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})\left((\vec{\mathbf{p}}\cdot\hat{n})I + i(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma}\right)$$
(40)

$$=\cos^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) + \frac{i}{2}\sin\theta\left((\vec{\mathbf{p}}\cdot\hat{n})I + i(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma}\right) - \frac{i}{2}\sin\theta\left((\vec{\mathbf{p}}\cdot\hat{n})I - i(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma}\right)$$

+ $\sin^{2}\frac{\theta}{2}\left[\left((\vec{\mathbf{p}}\cdot\hat{n})\hat{\mathbf{p}}\cdot\vec{\mathbf{p}}\right) + i(\hat{\mathbf{p}}\cdot\vec{\mathbf{p}})\cdot\vec{\mathbf{p}}\right)\right]$ (41)

$$+\sin^{2}\frac{\sigma}{2}[((\vec{\mathbf{p}}\cdot\hat{n})\hat{n}\cdot\vec{\sigma})+i(\hat{n}\cdot\vec{\sigma})((\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma})]$$

$$\tag{41}$$

$$=\cos^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) - \sin\theta(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma} + \sin^{2}\frac{\theta}{2}((\vec{\mathbf{p}}\cdot\hat{n})\hat{n}\cdot\vec{\sigma})$$
(42)

$$+ i \sin^2 \frac{\theta}{2} \left(\underbrace{\hat{n} \cdot (\vec{\mathbf{p}} \times \hat{n})}_{=0 \text{ since } (\vec{\mathbf{p}} \times \hat{n}) \perp \hat{n}} + i(\hat{n} \times (\vec{\mathbf{p}} \times \hat{n})) \cdot \vec{\sigma} \right)$$
(43)

$$=\cos^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) - \sin\theta(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma} + \sin^{2}\frac{\theta}{2}((\vec{\mathbf{p}}\cdot\hat{n})\hat{n}\cdot\vec{\sigma})$$
(44)

$$-\sin^{2}\frac{\theta}{2}\left(\vec{\mathbf{p}}\underbrace{(\hat{n}\cdot\hat{n})}_{=1 \text{ since }|\hat{n}|^{2}=1} -\hat{n}(\vec{\mathbf{p}}\cdot\hat{n})\right)\cdot\vec{\sigma}$$
(45)

$$=\cos^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) - \sin\theta(\vec{\mathbf{p}}\times\hat{n})\cdot\vec{\sigma} - \sin^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\vec{\sigma}) + 2\sin^{2}\frac{\theta}{2}(\vec{\mathbf{p}}\cdot\hat{n})(\hat{n}\cdot\vec{\sigma})$$
(46)

$$= \cos\theta(\vec{\mathbf{p}}\cdot\vec{\sigma}) + \sin\theta(\hat{\vec{n}}\times\vec{\mathbf{p}})\cdot\vec{\sigma} + (1-\cos\theta)(\vec{\mathbf{p}}\cdot\hat{n})(\hat{n}\cdot\vec{\sigma})$$
(47)

Since we are looking for something of the form $\vec{\mathbf{p}}' \cdot \vec{\sigma}$ we directly read off $\vec{\mathbf{p}}' = \cos \theta \vec{\mathbf{p}} + \sin \theta (\hat{n} \times \vec{\mathbf{p}}) + (1 - \cos \theta) (\vec{\mathbf{p}} \cdot \hat{n}) \hat{n}$, which corresponds to rotating the vector $\tilde{\mathbf{p}}$ by an angle θ around the unit vector \hat{n} . This has been written in the form of Rodrigues' rotation formula.

• (c) We will work in the z-basis, so that $|\pm x\rangle = \frac{1}{\sqrt{2}}(|+z\rangle \pm |-z\rangle)$ and $|\pm y\rangle =$

 $\frac{1}{\sqrt{2}}\left(|+z\rangle\pm i|-z\rangle\right)$. Given the problem statement, we have that

$$U|\pm z\rangle = e^{i\theta_z^{(\pm)}}|\mp z\rangle \tag{48}$$

Using this in the definitions for the other two directions, we find

$$U|\pm x\rangle = e^{i\theta_x^{(\pm)}}|\pm x\rangle \tag{49}$$

$$= \frac{1}{\sqrt{2}} \left[e^{i\theta_x^{(\pm)}} |+z\rangle \pm e^{i\theta_x^{(\pm)}} |-z\rangle \right]$$
(50)

(51)

But we also have

$$U|\pm x\rangle = U\frac{1}{\sqrt{2}}\left[|+z\rangle\pm|-z\rangle\right]$$
(52)

$$=\frac{1}{\sqrt{2}}\left[e^{i\theta_z^{(+)}}|-z\rangle\pm e^{i\theta_z^{(-)}}|+z\rangle\right]$$
(53)

$$=\frac{1}{\sqrt{2}}\left[\pm e^{i\theta_z^{(-)}}|+z\rangle+e^{i\theta_z^{(+)}}|-z\rangle\right]$$
(54)

Comparing coefficients we find

$$e^{i\theta_x^{(\pm)}} = \pm e^{i\theta_z^{(-)}} \tag{55}$$

$$e^{i\theta_x^{(\pm)}} = \pm e^{i\theta_z^{(\pm)}} \tag{56}$$

$$\Rightarrow e^{i\theta_z^{(-)}} = e^{i\theta_z^{(+)}} \tag{57}$$

For the y basis, we have

$$U|\pm z\rangle = e^{i\theta_y^{(\pm)}}|\pm y\rangle \tag{58}$$

$$= \frac{1}{\sqrt{2}} \left[e^{i\theta_y^{(\pm)}} |+z\rangle \pm i e^{i\theta_y^{(\pm)}} |-z\rangle \right]$$
(59)

(60)

But we also have

$$U|\pm y\rangle = U\frac{1}{\sqrt{2}}\left[|+z\rangle\pm i|-z\rangle\right]$$
(61)

$$=\frac{1}{\sqrt{2}}\left[e^{i\theta_z^{(+)}}|-z\rangle\pm ie^{i\theta_z^{(-)}}|+z\rangle\right]$$
(62)

$$=\frac{1}{\sqrt{2}}\left[\pm ie^{i\theta_z^{(-)}}|+z\rangle+e^{i\theta_z^{(+)}}|-z\rangle\right]$$
(63)

Comparing coefficients we find

$$e^{i\theta_y^{(\pm)}} = \pm ie^{-\theta_z^{(-)}} \tag{64}$$

$$e^{i\theta_y^{(\pm)}} = \mp i e^{-\theta_z^{(+)}} \tag{65}$$

$$\Rightarrow e^{-\theta_z^{(-)}} = -e^{-\theta_z^{(+)}} \tag{66}$$

There is no way to satisfy both Eq. (57) and Eq. (66) simultaneously.

3.3 Simon Says

• (a) The Walsh-Hadamard transform is given by

$$U_{WH} = \frac{1}{2^{n/2}} \sum_{j,k=0}^{2^n - 1} (-1)^{j \cdot k} |j\rangle \langle k|$$
(67)

Applying this to an initial state of the form $|0\rangle^{\otimes n}$ gives

$$\frac{1}{2^{n/2}} \sum_{j,k=0}^{2^n-1} (-1)^{j \cdot k} |j\rangle \langle k|0\rangle = \frac{1}{2^{n/2}} \sum_{j,k=0}^{2^n-1} (-1)^{j \cdot k} |j\rangle \delta_{k0}$$
(68)

$$=\frac{1}{2^{n/2}}\sum_{j=0}^{2^{n}-1}(-1)^{j\cdot 0}|j\rangle$$
(69)

$$=\frac{1}{2^{n/2}}\sum_{j=0}^{2^{n}-1}|j\rangle$$
(70)

which is a uniform superposition over all states.

• (b) Define the linear map $Q := |i\rangle |j\rangle \mapsto |i\rangle |j \oplus x_o\rangle$. Then

$$Q\left[\left(\frac{1}{2^{n/2}}\sum_{i=0}^{2^n-1}|i\rangle\right)\otimes|0\rangle^{\otimes n}\right] = Q\left[\frac{1}{2^{n/2}}\sum_{i=0}^{2^n-1}\left(|i\rangle\otimes|0\rangle^{\otimes n}\right)\right]$$
(71)

$$= \left[\frac{1}{2^{n/2}}\sum_{i=0}^{2^n-1} Q\left(|i\rangle \otimes |0\rangle^{\otimes n}\right)\right]$$
(72)

$$=\frac{1}{2^{n/2}}\sum_{i=0}^{2^n-1}|i\rangle\otimes|x_i\rangle\tag{73}$$

• (c) We now measure using the projectors $\Pi_j = I^{\otimes n} \otimes |j\rangle\langle j|$, for $j = 0, \ldots, N-1$. Consider the case where $s = 0^n$. We have $x_i = x_j$ if and only if $i = j \oplus 0$, which implies that each x_i is distinct. Since we are free to order this list in any way, let $x_i = i$ for $i = 0, \ldots, N-1$. Our state at the end of part (a) is then

$$\frac{1}{2^{n/2}} \sum_{i=0}^{2^{n-1}} |i\rangle \otimes |i\rangle \tag{74}$$

The probability of outcome j is given by

$$\operatorname{prob}(j) = \frac{1}{2^{n/2}} \sum_{i=0}^{2^n - 1} \langle i | \otimes \langle i | \Pi_j \frac{1}{2^{n/2}} \sum_{k=0}^{2^n - 1} | k \rangle \otimes | k \rangle \tag{75}$$

$$=\frac{1}{2^{n}}\sum_{i,k=0}^{2^{n}-1}\langle i|\otimes\langle i|(I^{\otimes n}\otimes|j\rangle\langle j|)|k\rangle\otimes|k\rangle$$
(76)

$$=\frac{1}{2^{n}}\sum_{i,k=0}^{2^{n}-1}\langle i|k\rangle\langle i|j\rangle\langle j|k\rangle$$
(77)

$$=\frac{1}{2^{n}}\sum_{i,k=0}^{2^{n}-1}\delta_{ijk}$$
(78)

$$=\frac{1}{2^n}\tag{79}$$

where in the last step we used the fact that exactly one term in the sum has i = j and k = j.

The post-measurement state is given by

$$\psi' = \sqrt{2^n} \Pi_j \frac{1}{2^{n/2}} \sum_{i=0}^{2^n - 1} |i\rangle \otimes |i\rangle \tag{80}$$

$$=\sum_{i=0}^{2^{n}-1}|i\rangle\otimes(|j\rangle\langle j|i\rangle)$$
(81)

$$=|j\rangle|j\rangle \tag{82}$$

$$=|j\rangle|x_{j}\rangle \tag{83}$$

where in the last step we have generalized from our assumed definition that $x_j = j$.

Now consider the case when $s \neq 0^n$. We now have that $x_i = x_j$ if and only if $i = j \oplus s$ which implies $x_i = x_{i \oplus s}$. Then exactly two $|x_i\rangle$ terms are equal. The probability of

measuring outcome j for this case is

$$\operatorname{prob}(j) = \frac{1}{2^{n/2}} \sum_{i=0}^{2^n - 1} \langle i | \otimes \langle x_i | \Pi_j \frac{1}{2^{n/2}} \sum_{k=0}^{2^n - 1} | k \rangle \otimes | x_k \rangle$$
(84)

$$=\frac{1}{2^n}\sum_{i,k=0}^{2^n-1}(\langle i|\otimes\langle x_i|)(I^{\otimes n}\otimes|j\rangle\langle j|)(|k\rangle\otimes|x_k\rangle)$$
(85)

$$=\frac{1}{2^{n}}\sum_{i,k=0}^{2^{n}-1}\langle i|k\rangle\otimes(\langle x_{i}|j\rangle\langle j|x_{k}\rangle)$$
(86)

$$=\frac{1}{2^{n}}\sum_{i,k=0}^{2^{n}-1}\delta_{ik}(\langle x_{i}|j\rangle\langle j|x_{k}\rangle)$$
(87)

$$=\frac{1}{2^n}\sum_{i}^{2^n-1}(\langle x_i|j\rangle\langle j|x_i\rangle)$$
(88)

$$=\frac{1}{2^{n-1}}$$
 (89)

where in the last step we have used the fact that $\langle x_i | j \rangle$ is equal to one for exactly two terms in the sum.

The post-measurement state is given by

$$\psi' = \sqrt{2^{n-1}} \prod_j \frac{1}{2^{n/2}} \sum_{i=0}^{2^n-1} |i\rangle \otimes |x_i\rangle$$
(90)

$$=\frac{1}{\sqrt{2}}\sum_{i=0}^{2^{n-1}}|i\rangle\otimes(|j\rangle\langle j|x_i\rangle)$$
(91)

$$=\frac{1}{\sqrt{2}}\sum_{i=0}^{2^{n}-1}|i\rangle\otimes|j\rangle\delta_{j,x_{i}}$$
(92)

$$=\frac{1}{\sqrt{2}}\left(\left|j\right\rangle+\left|j\oplus s\right\rangle\right)\otimes\left|x_{j}\right\rangle \tag{93}$$

where in the last step we have used the fact that $x_j = x_{j \oplus s}$.

• (d) First consider the case when $s = 0^n$. Applying another Walsh-Hadamard transform gives

$$U_{WH}|j\rangle|x_j\rangle = \left[\frac{1}{2^{n/2}}\sum_{i,k=0}^{2^{n-1}}(-1)^{i\cdot k}|i\rangle\langle k|j\rangle\right]\otimes x_j$$
(94)

$$=\left[\frac{1}{2^{n/2}}\sum_{i,k=0}^{2^n-1}(-1)^{i\cdot k}|i\rangle\delta_{kj}\right]\otimes x_j\tag{95}$$

$$= \frac{1}{2^{n/2}} \sum_{i=0}^{2^n - 1} (-1)^{i \cdot j} |i\rangle \otimes |x_j\rangle$$
(96)

Now consider the case when $s \neq 0^n$.

$$U_{WH}\left[\frac{1}{\sqrt{2}}\left(|j\rangle + |j\oplus s\rangle\right)\right] \otimes |x_j\rangle \tag{97}$$

$$= \frac{1}{\sqrt{2}} \left[U_{WH} | j \rangle \otimes | x_j \rangle + U_{WH} | j \oplus s \rangle \otimes | x_j \rangle \right]$$
(98)

$$=\frac{1}{2^{n/2+1/2}}\left[\sum_{i=0}^{2^{n}-1}(-1)^{i\cdot j}|i\rangle\otimes|x_{j}\rangle+\sum_{i,k=0}^{2^{n}-1}(-1)^{i\cdot k}|i\rangle\langle k|j\oplus s\rangle\otimes|x_{j}\rangle\right]$$
(99)

$$=\frac{1}{2^{n/2+1/2}}\left[\sum_{i=0}^{2^{n}-1}(-1)^{i\cdot j}|i\rangle\otimes|x_{j}\rangle+\sum_{i,k=0}^{2^{n}-1}(-1)^{i\cdot k}|i\rangle\delta_{k,j\oplus s}\otimes|x_{j}\rangle\right]$$
(100)

$$=\frac{1}{2^{n/2+1/2}}\left[\sum_{i=0}^{2^n-1}(-1)^{i\cdot j}|i\rangle\otimes|x_j\rangle+\sum_{i=0}^{2^n-1}(-1)^{i\cdot (j\oplus s)}|i\rangle\otimes|x_j\rangle\right]$$
(101)

$$= \frac{1}{2^{n/2+1/2}} \sum_{i=0}^{2^{n}-1} \left[(-1)^{i \cdot j} + (-1)^{i \cdot j} (-1)^{i \cdot s} \right] |i\rangle \otimes |x_j\rangle$$
(102)

$$= \frac{1}{2^{n/2+1/2}} \sum_{i=0}^{2^n-1} (-1)^{i \cdot j} \underbrace{\left[1 + (-1)^{i \cdot s}\right]}_{\text{is 2 if } i \cdot s = 0, \text{ else } = 0} |i\rangle \otimes |x_j\rangle \tag{103}$$

$$= \frac{1}{2^{(n-1)/2}} \sum_{i \cdot s = 0} (-1)^{i \cdot j} |i\rangle \otimes |x_j\rangle$$
(104)

where the sum in the last line is over *i* that satisfy $i \cdot s = 0$.

• (e) Looking at our worst case results in part (d), we notice that there is a uniform (equal) probability of recovering a given index *i*. Clearly the first measurement will yield an i_0 that is linearly independent, since it is the only index we have so far. Using this i_0 , we start to form a basis **B**, which is the span of $\{i_0\}$, where we treat i_0 as a length *n* vector with entries 0 and 1. Measuring again, we get result i_1 . This will be linearly independent of **B** if it is not equal to i_0 . The probability of this is the probability of not measuring i_0 , which is just $1 - \frac{1}{2^n}$.

Generalizing, we see that at step m + 1, the probability that we measure an index that is linearly independent from the span of the m previous independent vectors is $\frac{2^n-2^m}{2^n} = 1 - \frac{1}{2^{m-n}}$. To understand this expression, realize that from a linear algebra perspective, we can interpret our basis of m vectors as spanning the first m entries of an arbitrary vector. The only place a linearly independent vector can differ is in the remaining m locations, indicating that of all the 2^n possible bit strings, only $2^n - 2^m$ are linearly independent from those we have already seen. The probability that the n equations are linearly independent is then

$$P_{\text{independent}} = \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{4}\right) \times \dots \times \left(1 - \frac{1}{2^{n-1}}\right) \times \left(1 - \frac{1}{2^n}\right) \tag{105}$$

$$>\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k}\right) \tag{106}$$

$$> \frac{1}{4} \tag{107}$$

where we have acheived a lower bound by adding terms. Since $1 - \frac{1}{2^n} < 1$ for all n, we are guaranteed that the final expression is smaller than the actual form.