UNM Physics 452/581: Introduction to Quantum Information, Solution Set 3, Fall 2007

3.1 Quantum Safecracker

- (a) Recall that $U(\hat{n}, \theta)=\exp (-i \hat{n} \cdot \vec{\sigma} \theta / 2)=I \cos \frac{\theta}{2}-i \hat{n} \cdot(X, Y, Z) \sin \frac{\theta}{2}$. Since gates are equivalent up to a global phase, we can immediately see that $U(\hat{x}, \pi)=-i X \equiv X$, $U(\hat{y}, \pi)=-i Y \equiv Y, U(\hat{z}, \pi)=-i Z \equiv Z$.
- (b) Recall the following Pauli properties: $X Y=i Z, Y Z=i X, Z X=i Y$. Swapping the order of multiplication results in a negative sign.
- (i) First rotate about \hat{x}, then about \hat{y}.

$$
\begin{align*}
U\left(\hat{y}, \frac{\pi}{2}\right) U\left(\hat{x}, \frac{\pi}{2}\right) & =\left(I \cos \frac{\pi}{4}-i Y \sin \frac{\pi}{4}\right)\left(I \cos \frac{\pi}{4}-i X \sin \frac{\pi}{4}\right) \tag{1}\\
& =I \cos ^{2} \frac{\pi}{4}-i X \cos \frac{\pi}{4} \sin \frac{\pi}{4}-i Y \sin \frac{\pi}{4} \cos \frac{\pi}{4}-Y X \sin ^{2} \frac{\pi}{4} \tag{2}\\
& =\frac{1}{2}(I-i X-i Y+i Z) \tag{3}\\
& =\frac{1}{2}\left(\begin{array}{cc}
1+i & -(1+i) \\
1-i & 1-i
\end{array}\right) \tag{4}\\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
e^{i \frac{\pi}{4}} & -e^{i \frac{\pi}{4}} \\
e^{i \frac{\pi}{4}} & e^{i \frac{7 \pi}{4}}
\end{array}\right) \tag{5}\\
& =\frac{e^{i \frac{\pi}{4}}}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
-i & -i
\end{array}\right) \tag{6}
\end{align*}
$$

- (ii) Looking at Eq. (3), we notice it has a very similar form to the general decomposition of a rotation at the beginning of part (a), with $\vec{n}=(1,1,-1)$. Normalizing, we have $\hat{n}=\frac{1}{\sqrt{3}}(1,1,-1)$, implying $\theta=\frac{2 \pi}{3}$ to give the desired result.
- (c) Since we are assuming ϵ is infinitesimal, we can do a Taylor expansion of the matrix exponential, keeping the first three terms:

$$
\begin{equation*}
\exp \left(-i \hat{n} \cdot \vec{\sigma} \frac{\epsilon}{2}\right) \approx I-i \hat{n} \cdot \vec{\sigma} \frac{\epsilon}{2}-(\hat{n} \cdot \vec{\sigma})^{2} \frac{\epsilon^{2}}{8}=I-i \hat{n} \cdot \vec{\sigma} \frac{\epsilon}{2}-\frac{\epsilon^{2}}{8} I \tag{7}
\end{equation*}
$$

utilizing the fact that $(\hat{n} \cdot \vec{\sigma})^{2}=1$.

- (i) Overall, the rotation is (dropping terms of order ϵ^{3} or higher):

$$
\begin{align*}
U(\hat{y},-\epsilon) U(\hat{x},-\epsilon) U(\hat{y}, \epsilon) U(\hat{x}, \epsilon) & =\left(I+\frac{i \epsilon}{2} Y-\frac{\epsilon^{2}}{8} I\right)\left(I+\frac{i \epsilon}{2} X-\frac{\epsilon^{2}}{8} I\right) \tag{8}\\
& \times\left(I-\frac{i \epsilon}{2} Y-\frac{\epsilon^{2}}{8} I\right)\left(I-\frac{i \epsilon}{2} X-\frac{\epsilon^{2}}{8} I\right) \tag{9}\\
& =\left(I+\frac{i \epsilon}{2} Y+\frac{i \epsilon}{2} X-\frac{\epsilon^{2}}{4} I-\frac{\epsilon^{2}}{4} Y X\right) \tag{10}\\
& \times\left(I-\frac{i \epsilon}{2} Y-\frac{i \epsilon}{2} X-\frac{\epsilon^{2}}{4} I-\frac{\epsilon^{2}}{4} Y X\right) \tag{11}\\
& =I+\frac{i \epsilon}{2} Y+\frac{i \epsilon}{2} X-\frac{i \epsilon}{2} Y-\frac{i \epsilon}{2} X-\frac{\epsilon^{2}}{2}-\frac{\epsilon^{2}}{2} Y X \tag{12}\\
& +\frac{\epsilon^{2}}{4}\left(X^{2}+Y^{2}\right)+\frac{\epsilon^{2}}{4}(X Y+Y X) \tag{13}\\
& =I-\frac{\epsilon^{2}}{2} Y X \tag{14}\\
& =I+i \frac{\epsilon^{2}}{2} Z \tag{15}
\end{align*}
$$

- (iii) Comparing to the general taylor series expansion, this is $U\left(-\hat{z}, \epsilon^{2}\right)$.
- (d)
- (i) We have:

$$
\begin{align*}
U\left(\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z}), \frac{2 \pi}{3}\right) & =I \cos \frac{\pi}{3}-i \sin \frac{\pi}{3} \frac{1}{\sqrt{3}}(X+Y+Z) \tag{16}\\
& =\frac{1}{2}(I-i X-i Y-i Z) \tag{17}\\
& =\frac{1}{2}\left(\begin{array}{cc}
1-i & -(1+i) \\
1-i & 1+i
\end{array}\right) \tag{18}
\end{align*}
$$

- (ii) The spin up vectors are given by the +1 eigenvectors of the corresponding Pauli matrices.

1. Spin up along X

$$
\frac{1}{2}\left(\begin{array}{cc}
1-i & -(1+i) \tag{20}\\
1-i & 1+i
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{-i}{1}=\frac{-i}{\sqrt{2}}\binom{1}{i}
$$

Up to a phase, this is spin up along Y.
2. Spin up along Y

$$
\frac{1}{2}\left(\begin{array}{cc}
1-i & -(1+i) \tag{21}\\
1-i & 1+i
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{i}=\frac{1}{\sqrt{2}}\binom{1-i}{0}=e^{-i \frac{\pi}{4}}\binom{1}{0}
$$

Up to a phase, this is spin up along Z.
3. Spin up along Z

$$
\frac{1}{2}\left(\begin{array}{cc}
1-i & -(1+i) \tag{22}\\
1-i & 1+i
\end{array}\right)\binom{1}{0}=\frac{1}{2}\binom{1-i}{1-i}=\frac{e^{-i \frac{\pi}{4}}}{\sqrt{2}}\binom{1}{1}
$$

Up to a phase, this is spin up along X.

- (c) Comparing Eq. (3) and Eq. (17), we see that the only difference is the sign of the Z term, which came from simplifying the $Y X$ term. Knowing that reversing the order of multiplication of two Pauli matrices results in an overall minus sign, we should try first rotating about \hat{y} then about \hat{x} :

$$
\begin{align*}
U\left(\hat{x}, \frac{\pi}{2}\right) U\left(\hat{y}, \frac{\pi}{2}\right) & =\left(I \cos \frac{\pi}{4}-i X \sin \frac{\pi}{4}\right)\left(I \cos \frac{\pi}{4}-i Y \sin \frac{\pi}{4}\right) \tag{23}\\
& =I \cos ^{2} \frac{\pi}{4}-i X \cos \frac{\pi}{4} \sin \frac{\pi}{4}-i Y \sin \frac{\pi}{4} \cos \frac{\pi}{4}-X Y \sin ^{2} \frac{\pi}{4} \tag{24}\\
& =\frac{1}{2}(I-i X-i Y-i Z) \tag{25}\\
& =\frac{1}{2}(I-i(1,1,1) \cdot(X, Y, Z)) \tag{26}\\
& =I \cos \frac{\pi}{3}-\frac{i}{\sqrt{3}}(1,1,1) \cdot(X, Y, Z) \sin \frac{\pi}{3} \tag{27}
\end{align*}
$$

So rotate by $\frac{\pi}{2}$ about \hat{y}, then $\frac{\pi}{2}$ about \hat{x} to open the safe.

3.2 Bloch sphere

- (a) Recall from class that any qubit state say can be written as $|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+$ $e^{i \phi} \sin \frac{\theta}{2}|1\rangle$. Taking the explicit outer product:

$$
\begin{align*}
& \binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}\left(\begin{array}{ll}
\cos \frac{\theta}{2} & \left.e^{-i \phi} \sin \frac{\theta}{2}\right) \\
=\left(\begin{array}{cc}
\cos ^{2} \frac{\theta}{2} & e^{-i \phi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
e^{i \phi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} & \sin ^{2} \frac{\theta}{2}
\end{array}\right) \\
=\frac{1}{2}\left(\begin{array}{cc}
1+\cos \theta & \cos \phi \sin \theta-i \sin \phi \sin \theta \\
\cos \phi \sin \theta+i \sin \phi \sin \theta & 1-\cos \theta
\end{array}\right) \\
=\frac{1}{2}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\cos \phi \sin \theta\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\sin \phi \sin \theta\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)+\cos \theta\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
=\frac{1}{2}[I+(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) \cdot(X, Y, Z)]
\end{array}, l\right. \tag{28}
\end{align*}
$$

So $\overrightarrow{\mathbf{p}}=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$ and $|\overrightarrow{\mathbf{p}}|=\cos ^{2} \phi \sin ^{2} \theta+\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \theta=$ $\sin ^{2} \theta+\cos ^{2} \theta=1$.

- (b) Since $U(\hat{n}, \theta)$ takes $|\psi\rangle$ to $\left|\psi^{\prime}\right\rangle$, we have

$$
\begin{equation*}
\frac{1}{2}\left(I+\overrightarrow{\mathbf{p}}^{\prime} \cdot \vec{\sigma}\right)=U(\hat{n}, \theta) \frac{1}{2}(I+\overrightarrow{\mathbf{p}} \cdot \vec{\sigma}) U^{\dagger}(\hat{n}, \theta)=\frac{1}{2}\left(I+U(\hat{n}, \theta)(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma}) U^{\dagger}(\hat{n}, \theta)\right) \tag{33}
\end{equation*}
$$

Before continuing, we make note of the following identity (using Einstein summation convention):

$$
\begin{equation*}
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})=a_{i} b_{j} \sigma_{i} \sigma_{j}=a_{i} b_{j}\left(I \delta_{i j}+i \epsilon_{i j k} \sigma_{k}\right)=(\vec{a} \cdot \vec{b})+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma} \tag{34}
\end{equation*}
$$

If you are unaccustomed to this notation, you can verify the identity by explicitly calculating the left and right hand sides.

$$
\begin{align*}
& U(\hat{n}, \theta)(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma}) U^{\dagger}(\hat{n}, \theta) \tag{35}\\
& =\left[I \cos \frac{\theta}{2}-i \sin \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})\right](\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})\left[I \cos \frac{\theta}{2}+i \sin \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})\right] \tag{36}\\
& =\left[I \cos \frac{\theta}{2}-i \sin \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})\right]\left[\cos \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+i \sin \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})(\hat{n} \cdot \vec{\sigma})\right] \tag{37}\\
& =\left[I \cos \frac{\theta}{2}-i \sin \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})\right]\left[\cos \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+i \sin \frac{\theta}{2}((\overrightarrow{\mathbf{p}} \cdot \hat{n}) I+i(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma})\right] \tag{38}\\
& =\cos ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+i \sin \frac{\theta}{2} \cos \frac{\theta}{2}((\overrightarrow{\mathbf{p}} \cdot \hat{n}) I+i(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma}) \tag{39}\\
& -i \sin ^{\frac{\theta}{2}} \frac{\cos \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+\sin ^{2} \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})((\overrightarrow{\mathbf{p}} \cdot \hat{n}) I+i(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma})}{=\cos ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+\frac{i}{2} \sin \theta((\overrightarrow{\mathbf{p}} \cdot \hat{n}) I+i(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma})-\frac{i}{2} \sin \theta((\overrightarrow{\mathbf{p}} \cdot \hat{n}) I-i(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma})} \tag{40}\\
& +\sin ^{2} \frac{\theta}{2}[((\overrightarrow{\mathbf{p}} \cdot \hat{n}) \hat{n} \cdot \vec{\sigma})+i(\hat{n} \cdot \vec{\sigma})((\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma})] \\
& =\cos ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})-\sin \theta(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma}+\sin ^{2} \frac{\theta}{2}((\overrightarrow{\mathbf{p}} \cdot \hat{n}) \hat{n} \cdot \vec{\sigma}) \tag{41}\\
& +i \sin ^{2} \frac{\theta}{2}(\underbrace{}_{=0 \operatorname{since}(\overrightarrow{\mathbf{p}} \times \hat{n}) \perp \hat{n}} \tag{42}\\
& =\cos ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})-\sin \theta(\overrightarrow{\mathbf{p}} \times \hat{n}) \cdot \vec{\sigma}+\sin ^{2} \frac{\theta}{2}((\overrightarrow{\mathbf{p}} \cdot \hat{n}) \hat{n} \cdot \vec{\sigma}) \tag{43}\\
& -\sin ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}}(\underbrace{(\hat{n} \cdot \hat{n})}-\hat{n}(\overrightarrow{\mathbf{p}} \cdot \hat{n})) \cdot \vec{\sigma} \tag{44}\\
& \left.\left.=\cos ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})-\sin \theta(\overrightarrow{\mathbf{p}} \times \hat{n})\right) \cdot \vec{\sigma}\right) \tag{45}\\
& =\cos ^{\theta}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+\sin \theta(\overrightarrow{\hat{n}} \times \overrightarrow{\mathbf{p}}) \cdot \vec{\sigma}+\left(1-\sin ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \vec{\sigma})+2 \sin ^{2} \frac{\theta}{2}(\overrightarrow{\mathbf{p}} \cdot \hat{n})(\hat{n} \cdot \vec{\sigma})\right. \tag{46}
\end{align*}
$$

Since we are looking for something of the form $\overrightarrow{\mathbf{p}}^{\prime} \cdot \vec{\sigma}$ we directly read off $\overrightarrow{\mathbf{p}}^{\prime}=\cos \theta \overrightarrow{\mathbf{p}}+$ $\sin \theta(\hat{n} \times \overrightarrow{\mathbf{p}})+(1-\cos \theta)(\overrightarrow{\mathbf{p}} \cdot \hat{n}) \hat{n}$, which corresponds to rotating the vector $\tilde{\mathbf{p}}$ by an angle θ around the unit vector \hat{n}. This has been written in the form of Rodrigues' rotation formula.

- (c) We will work in the z-basis, so that $| \pm x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle \pm|-z\rangle)$ and $| \pm y\rangle=$
$\frac{1}{\sqrt{2}}(|+z\rangle \pm i|-z\rangle)$. Given the problem statement, we have that

$$
\begin{equation*}
U| \pm z\rangle=e^{i \theta_{z}^{(\pm)}}|\mp z\rangle \tag{48}
\end{equation*}
$$

Using this in the definitions for the other two directions, we find

$$
\begin{align*}
U| \pm x\rangle & =e^{i \theta_{x}^{(\pm)}}| \pm x\rangle \tag{49}\\
& =\frac{1}{\sqrt{2}}\left[e^{i \theta_{x}^{(\pm)}}|+z\rangle \pm e^{i \theta_{x}^{(\pm)}}|-z\rangle\right] \tag{50}
\end{align*}
$$

But we also have

$$
\begin{align*}
U| \pm x\rangle & =U \frac{1}{\sqrt{2}}[|+z\rangle \pm|-z\rangle] \tag{52}\\
& =\frac{1}{\sqrt{2}}\left[e^{i \theta_{z}^{(+)}}|-z\rangle \pm e^{i \theta_{z}^{(-)}}|+z\rangle\right] \tag{53}\\
& =\frac{1}{\sqrt{2}}\left[\pm e^{i \theta_{z}^{(-)}}|+z\rangle+e^{i \theta_{z}^{(+)}}|-z\rangle\right] \tag{54}
\end{align*}
$$

Comparing coefficients we find

$$
\begin{align*}
e^{i \theta_{x}^{(\pm)}} & = \pm e^{i \theta_{z}^{(-)}} \tag{55}\\
e^{i \theta_{x}^{(\pm)}} & = \pm e^{i \theta_{z}^{(+)}} \tag{56}\\
& \Rightarrow e^{i \theta_{z}^{(-)}}=e^{i \theta_{z}^{(+)}} \tag{57}
\end{align*}
$$

For the y basis, we have

$$
\begin{align*}
U| \pm z\rangle & =e^{i \theta_{y}^{(\pm)}}| \pm y\rangle \tag{58}\\
& =\frac{1}{\sqrt{2}}\left[e^{i \theta_{y}^{(\pm)}}|+z\rangle \pm i e^{i \theta_{y}^{(\pm)}}|-z\rangle\right] \tag{59}
\end{align*}
$$

But we also have

$$
\begin{align*}
U| \pm y\rangle & =U \frac{1}{\sqrt{2}}[|+z\rangle \pm i|-z\rangle] \tag{61}\\
& =\frac{1}{\sqrt{2}}\left[e^{i \theta_{z}^{(+)}}|-z\rangle \pm i e^{i \theta_{z}^{(-)}}|+z\rangle\right] \tag{62}\\
& =\frac{1}{\sqrt{2}}\left[\pm i e^{i \theta_{z}^{(-)}}|+z\rangle+e^{i \theta_{z}^{(+)}}|-z\rangle\right] \tag{63}
\end{align*}
$$

Comparing coefficients we find

$$
\begin{align*}
e^{i \theta_{y}^{(\pm)}} & = \pm i e^{-\theta_{z}^{(-)}} \tag{64}\\
e^{i \theta_{y}^{(\pm)}} & =\mp i e^{-\theta_{z}^{(+)}} \tag{65}\\
& \Rightarrow e^{-\theta_{z}^{(-)}}=-e^{-\theta_{z}^{(+)}} \tag{66}
\end{align*}
$$

There is no way to satisfy both Eq. (57) and Eq. (66) simultaneously.

3.3 Simon Says

- (a) The Walsh-Hadamard transform is given by

$$
\begin{equation*}
U_{W H}=\frac{1}{2^{n / 2}} \sum_{j, k=0}^{2^{n}-1}(-1)^{j \cdot k}|j\rangle\langle k| \tag{67}
\end{equation*}
$$

Applying this to an initial state of the form $|0\rangle^{\otimes n}$ gives

$$
\begin{align*}
\frac{1}{2^{n / 2}} \sum_{j, k=0}^{2^{n}-1}(-1)^{j \cdot k}|j\rangle\langle k \mid 0\rangle & =\frac{1}{2^{n / 2}} \sum_{j, k=0}^{2^{n}-1}(-1)^{j \cdot k}|j\rangle \delta_{k 0} \tag{68}\\
& =\frac{1}{2^{n / 2}} \sum_{j=0}^{2^{n}-1}(-1)^{j \cdot 0}|j\rangle \tag{69}\\
& =\frac{1}{2^{n / 2}} \sum_{j=0}^{2^{n}-1}|j\rangle \tag{70}
\end{align*}
$$

which is a uniform superposition over all states.

- (b) Define the linear map $Q:=|i\rangle|j\rangle \mapsto|i\rangle\left|j \oplus x_{o}\right\rangle$. Then

$$
\begin{align*}
Q\left[\left(\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}|i\rangle\right) \otimes|0\rangle^{\otimes n}\right] & =Q\left[\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}\left(|i\rangle \otimes|0\rangle^{\otimes n}\right)\right] \tag{71}\\
& =\left[\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1} Q\left(|i\rangle \otimes|0\rangle^{\otimes n}\right)\right] \tag{72}\\
& =\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes\left|x_{i}\right\rangle \tag{73}
\end{align*}
$$

- (c) We now measure using the projectors $\Pi_{j}=I^{\otimes n} \otimes|j\rangle\langle j|$, for $j=0, \ldots, N-1$. Consider the case where $s=0^{n}$. We have $x_{i}=x_{j}$ if and only if $i=j \oplus 0$, which implies that each x_{i} is distinct. Since we are free to order this list in any way, let $x_{i}=i$ for $i=0, \ldots, N-1$. Our state at the end of part (a) is then

$$
\begin{equation*}
\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes|i\rangle \tag{74}
\end{equation*}
$$

The probability of outcome j is given by

$$
\begin{align*}
\operatorname{prob}(j) & =\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}\langle i| \otimes\langle i| \Pi_{j} \frac{1}{2^{n / 2}} \sum_{k=0}^{2^{n}-1}|k\rangle \otimes|k\rangle \tag{75}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1}\langle i| \otimes\langle i|\left(I^{\otimes n} \otimes|j\rangle\langle j|\right)|k\rangle \otimes|k\rangle \tag{76}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1}\langle i \mid k\rangle\langle i \mid j\rangle\langle j \mid k\rangle \tag{77}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1} \delta_{i j k} \tag{78}\\
& =\frac{1}{2^{n}} \tag{79}
\end{align*}
$$

where in the last step we used the fact that exactly one term in the sum has $i=j$ and $k=j$.

The post-measurement state is given by

$$
\begin{align*}
\psi^{\prime} & =\sqrt{2^{n}} \Pi_{j} \frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes|i\rangle \tag{80}\\
& =\sum_{i=0}^{2^{n}-1}|i\rangle \otimes(|j\rangle\langle j \mid i\rangle) \tag{81}\\
& =|j\rangle|j\rangle \tag{82}\\
& =|j\rangle\left|x_{j}\right\rangle \tag{83}
\end{align*}
$$

where in the last step we have generalized from our assumed definition that $x_{j}=j$.
Now consider the case when $s \neq 0^{n}$. We now have that $x_{i}=x_{j}$ if and only if $i=j \oplus s$ which implies $x_{i}=x_{i \oplus s}$. Then exactly two $\left|x_{i}\right\rangle$ terms are equal. The probability of
measuring outcome j for this case is

$$
\begin{align*}
\operatorname{prob}(j) & =\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}\langle i| \otimes\left\langle x_{i}\right| \Pi_{j} \frac{1}{2^{n / 2}} \sum_{k=0}^{2^{n}-1}|k\rangle \otimes\left|x_{k}\right\rangle \tag{84}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1}\left(\langle i| \otimes\left\langle x_{i}\right|\right)\left(I^{\otimes n} \otimes|j\rangle\langle j|\right)\left(|k\rangle \otimes\left|x_{k}\right\rangle\right) \tag{85}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1}\langle i \mid k\rangle \otimes\left(\left\langle x_{i} \mid j\right\rangle\left\langle j \mid x_{k}\right\rangle\right) \tag{86}\\
& =\frac{1}{2^{n}} \sum_{i, k=0}^{2^{n}-1} \delta_{i k}\left(\left\langle x_{i} \mid j\right\rangle\left\langle j \mid x_{k}\right\rangle\right) \tag{87}\\
& =\frac{1}{2^{n}} \sum_{i}^{2^{n}-1}\left(\left\langle x_{i} \mid j\right\rangle\left\langle j \mid x_{i}\right\rangle\right) \tag{88}\\
& =\frac{1}{2^{n-1}} \tag{89}
\end{align*}
$$

where in the last step we have used the fact that $\left\langle x_{i} \mid j\right\rangle$ is equal to one for exactly two terms in the sum.

The post-measurement state is given by

$$
\begin{align*}
\psi^{\prime} & =\sqrt{2^{n-1}} \Pi_{j} \frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes\left|x_{i}\right\rangle \tag{90}\\
& =\frac{1}{\sqrt{2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes\left(|j\rangle\left\langle j \mid x_{i}\right\rangle\right) \tag{91}\\
& =\frac{1}{\sqrt{2}} \sum_{i=0}^{2^{n}-1}|i\rangle \otimes|j\rangle \delta_{j, x_{i}} \tag{92}\\
& =\frac{1}{\sqrt{2}}(|j\rangle+|j \oplus s\rangle) \otimes\left|x_{j}\right\rangle \tag{93}
\end{align*}
$$

where in the last step we have used the fact that $x_{j}=x_{j \oplus s}$.

- (d) First consider the case when $s=0^{n}$. Applying another Walsh-Hadamard transform gives

$$
\begin{align*}
U_{W H}|j\rangle\left|x_{j}\right\rangle & =\left[\frac{1}{2^{n / 2}} \sum_{i, k=0}^{2^{n}-1}(-1)^{i \cdot k}|i\rangle\langle k \mid j\rangle\right] \otimes x_{j} \tag{94}\\
& =\left[\frac{1}{2^{n / 2}} \sum_{i, k=0}^{2^{n}-1}(-1)^{i \cdot k}|i\rangle \delta_{k j}\right] \otimes x_{j} \tag{95}\\
& =\frac{1}{2^{n / 2}} \sum_{i=0}^{2^{n}-1}(-1)^{i \cdot j}|i\rangle \otimes\left|x_{j}\right\rangle \tag{96}
\end{align*}
$$

Now consider the case when $s \neq 0^{n}$.

$$
\begin{align*}
U_{W H} & {\left[\frac{1}{\sqrt{2}}(|j\rangle+|j \oplus s\rangle)\right] \otimes\left|x_{j}\right\rangle } \tag{97}\\
& =\frac{1}{\sqrt{2}}\left[U_{W H}|j\rangle \otimes\left|x_{j}\right\rangle+U_{W H}|j \oplus s\rangle \otimes\left|x_{j}\right\rangle\right] \tag{98}\\
& =\frac{1}{2^{n / 2+1 / 2}}\left[\sum_{i=0}^{2^{n}-1}(-1)^{i \cdot j}|i\rangle \otimes\left|x_{j}\right\rangle+\sum_{i, k=0}^{2^{n}-1}(-1)^{i \cdot k}|i\rangle\langle k \mid j \oplus s\rangle \otimes\left|x_{j}\right\rangle\right] \tag{99}\\
& =\frac{1}{2^{n / 2+1 / 2}}\left[\sum_{i=0}^{2^{n}-1}(-1)^{i \cdot j}|i\rangle \otimes\left|x_{j}\right\rangle+\sum_{i, k=0}^{2^{n}-1}(-1)^{i \cdot k}|i\rangle \delta_{k, j \oplus s} \otimes\left|x_{j}\right\rangle\right] \tag{100}\\
& =\frac{1}{2^{n / 2+1 / 2}}\left[\sum_{i=0}^{2^{n}-1}(-1)^{i \cdot j}|i\rangle \otimes\left|x_{j}\right\rangle+\sum_{i=0}^{2^{n}-1}(-1)^{i \cdot(j \oplus s)}|i\rangle \otimes\left|x_{j}\right\rangle\right] \tag{101}\\
& =\frac{1}{2^{n / 2+1 / 2}} \sum_{i=0}^{2^{n}-1}\left[(-1)^{i \cdot j}+(-1)^{i \cdot j}(-1)^{i \cdot s}\right]|i\rangle \otimes\left|x_{j}\right\rangle \tag{102}\\
& =\frac{1}{2^{n / 2+1 / 2}} \sum_{i=0}^{2^{n}-1}(-1)^{i \cdot j} \underbrace{\left[1+(-1)^{i \cdot s}\right]}_{\text {is } 2 \text { if } i \cdot s=0, \text { else }=0}|i\rangle \otimes\left|x_{j}\right\rangle \tag{103}\\
& =\frac{1}{2^{(n-1) / 2}} \sum_{i \cdot s=0}(-1)^{i \cdot j}|i\rangle \otimes\left|x_{j}\right\rangle \tag{104}
\end{align*}
$$

where the sum in the last line is over i that satisfy $i \cdot s=0$.

- (e) Looking at our worst case results in part (d), we notice that there is a uniform (equal) probability of recovering a given index i. Clearly the first measurement will yield an i_{0} that is linearly independent, since it is the only index we have so far. Using this i_{0}, we start to form a basis \mathbf{B}, which is the span of $\left\{i_{0}\right\}$, where we treat i_{0} as a length n vector with entries 0 and 1 . Measuring again, we get result i_{1}. This will be linearly independent of \mathbf{B} if it is not equal to i_{0}. The probability of this is the probability of not measuring i_{0}, which is just $1-\frac{1}{2^{n}}$.

Generalizing, we see that at step $m+1$, the probability that we measure an index that is linearly independent from the span of the m previous independent vectors is $\frac{2^{n}-2^{m}}{2^{n}}=1-\frac{1}{2^{m-n}}$. To understand this expression, realize that from a linear algebra perspective, we can interpret our basis of m vectors as spanning the first m entries of an arbitrary vector. The only place a linearly independent vector can differ is in the remaining m locations, indicating that of all the 2^{n} possible bit strings, only $2^{n}-2^{m}$ are linearly independent from those we have already seen. The probability that the n
equations are linearly independent is then

$$
\begin{align*}
P_{\text {independent }} & =\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{4}\right) \times \cdots \times\left(1-\frac{1}{2^{n-1}}\right) \times\left(1-\frac{1}{2^{n}}\right) \tag{105}\\
& >\prod_{k=1}^{\infty}\left(1-\frac{1}{2^{k}}\right) \tag{106}\\
& >\frac{1}{4} \tag{107}
\end{align*}
$$

where we have acheived a lower bound by adding terms. Since $1-\frac{1}{2^{n}}<1$ for all n, we are guaranteed that the final expression is smaller than the actual form.

