
UNM Physics 452/581: Introduction to Quantum Information,
Problem Set 4, Fall 2007

Instructor: Dr. Landahl
Issued: Wednesday, September 26, 2007
Due: Thursday, October 4, 2007

Do all of the problems listed below. Hand in your problem set at the beginning of class on
the desk at the front of the classroom or after class in the box in the Physics and Astronomy
main office by 5 p.m. Please put your name and/or IQI number number on your
assignment, as well as the course number (Physics 452/581). Please show all your work
and write clearly. Credit will be awarded for clear explanations as much, if not more so,
than numerical answers. Avoid the temptation to simply write down an equation and move
symbols around or plug in numbers. Explain what you are doing, draw pictures, and check
your results using common sense, limits, and/or dimensional analysis.

4.1. ΘΩO frat initiation

The co-ed fraternity ΘΩO is renowned for its great parties and successful alums. After
college, most members go on to be leaders in business and industry—alums tend to have a
knack for seeing where ideas will lead in the long run. Perhaps it has something to do with
the unusual ΘΩO initiation process, which some say borders on hazing.

After going to some ΘΩO parties and having a good time, you decide to rush the frat.
Eventually, the time comes for initiation. A dark hood is placed over your head, you’re
thrown into a van, driven to a seemingly remote location, dragged into a room and your
hood is removed. The room is spartan, containing only a desk, a chair, a pencil, and a piece
of paper. On the piece of paper, you read the following set of instructions.

To join ΘΩO, you must demonstrate your knowledge of the secrets of Θ,

Ω, and O notations. For functions f and g, these notations are defined

as:

f = O(g)⇔ (∃N0 > 0)(∃k > 0)(∀N > N0)[f(N) ≤ kg(N)]

f = Ω(g)⇔ (∃N0 > 0)(∃k > 0)(∀N > N0)[f(N) ≥ kg(N)]

f = Θ(g)⇔ [(f = O(g)) ∧ (f = Ω(g))]

Use these notations to rank the following functions from slowest-growing

to fastest-growing. Put a ≤ symbol between functions f and g if

f = O(g) (or equivalently if g = Ω(f)) and put an = symbol between

functions f and g if f = Θ(g).

n, n log2 n, (log2 n)n, (lnn)n, nlnn, 2n, n!,

(
2n

n

)
, ln(n!), ln

(
2n

n

)
.

1

Your first thought is “Do I really want to join this fraternity?” Nevertheless, you remem-
ber how great those parties were and decide to answer the initiation question. Fortunately
for you, you’ve seen these notations before in your IQI class, and you remember Stirling’s
approximation, which says that n! ≈

√
2πn(n/e)n. With this preparation, you feel confident

you’ll answer the question correctly and pass this initiation test.

(a) Answer the initiation question.

After you finish answering the question, the hood is placed back over your head and you
are once again whisked away and sat down in a chair in what seems to be a new room. You
hear the sounds of people rustling and murmuring; you guess that these are frat members.
Finally, you recognize the fraternity president’s voice as he speaks to you, “You have passed
the initiation test. But to be a true member, you must also learn the darkest secret of our
fraternity. Not all functions can be ranked using Θ, Ω and O notation. There are some
functions such that neither f = O(g) nor g = O(f). Tell me an example of such a pair of
functions and your initiation will be complete.”

(b) Answer the frat president’s question.

You answer the question successfully and, after a round of applause, your hood is removed
and you recognize the other frat members—you are in the ΘΩO main party room. The
president gets everyone to settle down, congratulates you, and offers you a chance to join
the fraternity leadership committee. He tells you, “To be on the committee, you have to
show not just understanding but true mastery of the Θ, Ω and O notations. To prove you
are worthy to be on this committee, answer the following question about one of our most
secret functions. It is the function f defined so that f(f(N)) = 2N . Where does f fit in the
ranking you did for the initiation exam?”

(c) (Extra credit.) Answer the frat president’s question to join the leadership committee.

4.2 Dr. Falken, Would you like to play a game?

In the hacker-movie classic, War Games, a computer known as “Joshua” or “The WOPR”
is programmed to learn from playing games. In the film’s climax, the computer learns that
the only way to win the “game” of Global Thermonuclear War is “not to play.” In this
problem, we examine just how hard it is for a computer to evaluate whether the first or
second player of a two-player game has a winning strategy.

Consider a two-player game in which the players, whom we shall call Alice and Bob (or
A and B), alternate public moves until a final game configuration is reached in which one
player wins while the other loses. Such a game is called a finite perfect-information zero-sum
game. These kinds of games can be described by a game tree: a rooted tree in which each
child node corresponds to a game configuration reachable by a possible move from the parent
node. Each leaf of a game tree is given the value 0 or 1 depending on whether or not the
correpsonding configuration indicates a win for player A or B respectively. The value of a
game tree is a bit, 0 or 1, indicating whether or not the first player, whom we take to be
Alice without loss of generality, wins or loses the game when she plays optimally.

In the scenario just described, the computational question we are interested in is how
difficult it is to evaluate the game tree’s value, which is manifestly a function of the game

2

tree leaf values, i.e., g = g(x0, . . . , xN) where N is the number of leaves in the tree. In
particular, we are interested in the query complexity of this problem: how many leaf values
need to be queried in the worst case to evaluate the game tree value? By focusing on the
query complexity of this problem, we abstract away the details of how the terminal game
configurations are evaluated. To simplify the analysis of this problem, in this exercise we
will confine our attention to games which always terminate after exactly the nth move and
where exactly k moves are possible from any nonterminal game configuration.

It is straightforward to see that the value of a game tree is 0 if and only if there exists
a first move for Alice such that for every first move for Bob, there exists a second move for
Alice such that for every second move for Bob, . . ., there exists a last move by Alice that is
a win for Alice. (Or if Bob moves last, there exists a last move by Alice such that for every
last move by Bob, Alice wins.) This alternation of “for all”/“exists” reasoning is captured
by evaluating the function that is the k-bit or of the k-bit and of the k-bit or of the k-bit
and, etc. For this reason, game trees are sometimes called and-or trees.

(a) Game trees are also sometimes also called nand trees, because, up to a possible
negation of inputs and outputs, the alternating application of ands and ors yields the same
result as if nand had been applied at each level. Prove this for the case when the fanout of
the tree is k = 2. That is, prove that (i)

(a ∧ b) ∨ (c ∧ d) = (a ∧̄ b) ∧̄ (c ∧̄ d),

and (ii)

¬
(
(ā ∨ b̄) ∧ (c̄ ∨ d̄)

)
= (a ∧̄ b) ∧̄ (c ∧̄ d),

where ∧̄ denotes the nand gate and both ¬x and x̄ denote not(x).

(Hint : You can prove this by exhausting all possible bit values (the symmetry of the
functions makes casing this out simpler than you might think), but it is also possible to prove
this algebraically using de Morgan’s laws, which say that ¬(x∨y) = x̄∧ȳ and ¬(x∧y) = x̄∨ȳ.)

(b) An optimal Las Vegas classical algorithm for evaluating a nand tree value is called
depth-first pruning. Let’s call this algorithm A(n, k) when it is applied to a depth-n, fanout-
k nand tree. The way A(n, k) works is as follows. Starting at the root of the tree, one
of the k children is selected uniformly at random. The selected child is itself the root of
a nand subtree that is evaluated recursively using A(n − 1, k). If the value returned is
sufficient to determine A(n, k), then the algorithm stops and returns that value. Otherwise,
one of the remaining children is selected uniformly at random and evaluated recursively using
A(n− 1, k). This process repeats until the value of A(n, k) is determined.

Recall that the way that query complexity is measured for a Las Vegas algorithm is by
the expected number of queries it must make for the worst-case input. Let Cb(n, k) denote
the query complexity of A(n, k) when the nand tree evaluates to b, where b is either 0 or 1.

Given the description of the depth-first pruning (DFP) algorithm, asserted to be optimal
in that it uses the smallest possible query complexity for this problem, show that the following

3

relations hold

C0(n, k) = kC1(n− 1, k)

C1(n, k) = C0(n− 1, k) +
k − 1

2
C1(n− 1, k)

(Hint : You may find it easier to study the case for k = 2 first, then k = 3, etc., until you
see a pattern emerge.)

(Further hint 10/3/07 : Let k = 3, n = 1, and suppose that the nand of three bits
evaluates to 1. Then the worst-case input for the DFP (which does not know that the
nand of the three bits evaluates to 1) is any of the instances 011, 101, or 110. For any of
these instances, the DFP will make one query 1/3 of the time and stop. The other 2/3 of
the time it made the one query and will need to make more queries. How many? I leave
that for you to figure out, but the reasoning is similar and considers how the DFP acts for
the worst-case of the remaining unqueried bits. When deriving the complexity relation
formulas, it is important to look at the worst-case instance for the DFP and not at a
distribution over instances to the DFP.)

(c) Solve the recurrence relation in part (b) to show that

C(n, k) := max{C0(n, k), C1(n, k)}

= O(N
logk

„
k−1+

√
k2+14k+1
4

«
),

where N := kn is the number of leaves in the tree.

(Hint : Substitute one recurrence relation into the other to obtain a recurrence relation
entirely in terms of C1. Then use the Ansatz solution C1(n, k) = Arn for some unknown
constants A and r. This will lead to a quadratic equation in r whose positive root is the
argument to the logarithm in the solution.)

(d) The deterministic query complexity for this problem is N—given any deterministic
algorithm for this problem, there is some input which will require the algorithm to examine
every leaf to determine the nand tree value. Proving this is harder than it first seems, but we
can get a glimmer of why this is true by imagining what happens to the DFP algorithm when
the choice about which child to evaluate is made not randomly but deterministically. Let
A′(n, k) be a variant of the DFP algorithm in which child nodes are always evaluated from
left to right until the parent node’s value is determined. Give an example of an input string
x0 . . . xN for which all N bits must be evaluated for A′(n, 2). (Warning : Be careful—coming
up with a consistent answer requires a bit of thought.)

* * *

This problem in context:

Your analysis in this problem shows that for any binary (k = 2) nand tree f on N leaves,

R0(f) = O(Nα), D(f) = O(N),

4

where α := (1 +
√

33)/4 ≈ 0.753. It turns out that these equalities are tight [1], even
when two-sided error randomized algorithms are considered [2], although we didn’t prove
the corresponding lower bounds. Namely, it is known that binary nand tree evaluation has
query complexity

R0(f) = R2(f) = Θ(Nα), D(f) = N.

What’s the significance of this? Well in class it was noted that for an arbitrary total
Boolean function it is known that [3]

R2(f) = Ω((D(f)1/3), Q2(f) = Ω(D(f)1/6).

These bounds suggest that there is hope to get third-root query algorithm speedups by
using randomized, rather than deterministic algorithms and sixth-root speedups by using
quantum, rather than deterministic algorithms for total Boolean functions. However, to
date, the largest-known query complexity speedup for a total Boolean function is a square-
root for quantum algorithms, e.g., by Grover’s algorithm, and a 1/α ≈ 1.327th-root speedup
for randomized algorithms, precisely for this nand tree problem. It is widely conjectured
that this 1/α randomizing speedup is the best possible for total Boolean functions, but a
proof is still lacking. One reason for believing this conjecture is that any read-once total
Boolean function, namely a total Boolean function composed of and, or, and not gates
such that its inputs appear at most once, evaluates to the value of some binary (and possibly
unbalanced) nand tree.

A natural question is, “What is the quantum query complexity of evaluating a nand
tree?” It turns out that this question was (mostly) settled only very recently. In 2003,
Barnum et al. [4] proved that Q2(f) = Ω(D(f)1/2), and earlier this year (2007) a series of
papers by various authors presented quantum query algorithms whose complexity is very
close to this. In particular, the latest in this string of papers is a result by Ambainis [5]
demonstrating that evaluating binary nand trees has query complexity Q2(f) = O(D(f)1/2)

for balanced nand trees and query complexity Q2(f) = O(D(f)
1/2+O(1√

log N
)
) for evaluating

unbalanced nand trees.

4.3. Clifford, but not the big red dog

We’ve discussed a number of quantum gate bases in this course, such as the following
four:

Standard : {H,S, T,Λ(X)}
Shor : {H,S,Λ2(X)}
Kitaev : {H,Λ(S)}
Gottesman-Knill : {H,S,Λ(X)}

As noted in class, the first three are universal for quantum computation but the last
one is not—circuits in the Gottesman-Knill basis can be efficiently simulated by classical

5

circuits. So what do the first three circuits have that the last one doesn’t? They contain
gates that are not in what is called the Clifford group. A gate G is said to be in the
(n-qubit) Clifford group if and only if for every (n-fold tensor product) Pauli operator P ,
GPG−1 = {±1,±i}P ′ for some (n-fold tensor product) Pauli operator P ′. The content of
the Gottesman-Knill Theorem is that circuits composed solely of gates in the Clifford group
are easy to simulate classically.

(a) Show that H and S are in the Clifford group by expressing HPH and SPS−1 as Pauli
operators, up to an overall ±1 or ±i phase, for each of the Pauli operators P ∈ {I,X, Y, Z}.
(I.e., evaluate HIH, HXH, HZH, etc.)

(b) Show that Λ(X) is in the Clifford group by expressing Λ(X) ·P ·Λ(X) as a two-qubit
Pauli operator, up to an overall ±1 or ±i phase, for each two-qubit Pauli operator P . (Hint :
Although there are sixteen two-qubit Pauli operators II, IX, IY , IZ, XI, etc., to consider,
evaluating Λ(X) · P · Λ(X) for all these combinations is not as tedious as it seems if you
make clever use of the following two factoids:

If Λ(X) · P · Λ(X) = P ′ then Λ(X) · P ′ · Λ(X) = P.

If Λ(X) · P1 · Λ(X) = P ′1 and Λ(X) · P2 · Λ(X) = P ′2, then Λ(X) · P1P2 · Λ(X) = P ′1P
′
2.)

(c) Show that T is not in the Clifford group by expressing TXT−1 as a sum of one-qubit
Pauli operators.

(d) Show that Λ(S) is not in the Clifford group by expressing Λ(S)(XI)Λ(S)−1 as a sum
of two-qubit Pauli operators.

(e) Show that Λ2(X) is not in the Clifford group by expressing Λ2(X)(IIZ)Λ2(X)−1 as
a sum of the three-qubit Pauli operators.

(Hint : For parts (c) through (e), you may find it helpful to use the fact that any n-qubit
matrix M can be written as

M =
3∑

i1,...,in=0

αi1...inσi1 ⊗ · · · ⊗ σin

where each σi is a one-qubit Pauli matrix and each αi1...in is a complex number. Given a
matrix M from which one wants to extract a particular coefficient αj1...jn in this expansion,
one can use the readily-verified fact that

tr(M(σj1 ⊗ · · · ⊗ σjn)) = 2nαj1...jn

On the other hand, you may find it just as easy for these small examples to pick out the
resultant sum of Pauli operators “by eye.”)

References

[1] M. Saks and A. Wigderson, Probabilistic Boolean decision trees and the complexity of
evaluating game trees, in Proceedings of the 27th Annual Symposium on Foundations

6

of Computer Science, IEEE (IEEE Press, New York, 27–29 Oct. 1986, Toronto, ONT,
Canada, 1986), pp. 29–38.

[2] M. Santha, On the Monte Carlo Boolean decision tree complexity of read-once formulae,
Random Structures and Algorithms 6, 75 (1995).

[3] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A survey,
Theo. Comp. Sci. 287, 21 (2002), doi:10.1016/S0304-3975(02)00377-8, URL http:

//homepages.cwi.nl/~rdewolf/publ/qc/dectree.pdf.

[4] H. Barnum, M. Saks, and M. Szegedy, Quantum query complexity and semi-definite pro-
gramming, in Proceedings of the 18th IEEE International Conference on Computational
Complexity, IEEE (IEEE Press, 7–10 Jul. 2003, Aarhus, Denmark, 2003), pp. 179–193.

[5] A. Ambainis, A nearly optimal discrete query quantum algorithm for evaluating nand
formulas (2007), arXiv:0704.3628.

7

http://dx.doi.org/10.1016/S0304-3975(02)00377-8
http://homepages.cwi.nl/~rdewolf/publ/qc/dectree.pdf
http://homepages.cwi.nl/~rdewolf/publ/qc/dectree.pdf
http://arxiv.org/pdf/0704.3628

