
UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 4, Fall 2007

4.1 ΘΩO frat initiation

• (a) First apply Stirling’s approximation n! ≈
√

2πn(n/e)n to rewrite the last four
functions. We find that

n! =
√

2πn
(n

e

)n

(1)
(

2n

n

)

=
4n

√
nπ

(2)

ln(n!) = ln
√

2π + (n +
1

2
) lnn − n (3)

ln

(
2n

n

)

= n ln 4 − 1

2
ln nπ (4)

The final ordering is

n = ln

(
2n

n

)

≤ ln n! = n log2 n ≤ nln n ≤ 2n ≤
(

2n

n

)

≤ (ln n)n ≤ (log2 n)n ≤ n! (5)

Rather than providing explicit constants, the following discussion attempts to catego-
rize the classes of asymptotic growth.

– n (Linear Growth): We see that n and ln
(
2n
n

)
are to highest order linear in

n. While ln
(
2n
n

)
does have the −1

2
ln nπ component, it is dominated by n ln 4 for

large n. Constants can be easily chosen to account for the ln 4 factor difference
allowing us bound either function by the other.

– n log n (Log-Linear Growth): For large n, lnn! and n log2 n are dominated by
terms of the form n logb n. Logarithms of different bases are related by loga b =
logc b
logc a

, indicating that they are equivalent under the asymptotic notations (since

we can always multiply by logc a). It is also readily seen that these functions are
not in the same class as the linear ones, as we cannot find a constant k such that

kn ≥ n log n (6)

k ≥ log n (7)

for all n > n0.

– nln n (Exponential Logarithmic Growth): Due to the exponential, it is clear that
this function grows faster than any linear or log-linear one. Since the term in the
exponent is a logarithm (which grows more slowly than a linear function), this
function grows more slowly than the next class of functions.

– cn (Constant Exponential Growth): Although 2n ≤
(
2n
n

)
, the two functions have

similar asymptotic forms. We note that
(
2n
n

)
≈ 4n = (22)n = 22n, so this function

will grow faster than 2n.

1



– (logb n)n (Logarithmic Exponential Growth): The next two functions are similar,
but not in the same class. We have that

(log2 n)n = (ln 2)−n(ln n)n (8)

Since ln 2 < 1, we see that the log2 term will grow more than a constant faster
than the ln term.

– n! (Factorial Growth): Not surprisingly, the factorial function grows the fastest.
In the asymptotic form, it goes as nn, which is clearly faster than when either the
exponent or the base is logarithmic.

• (b) Let f(n) = (1 + sin n) and g(n) = (1 + cosn). Considering the f = O(g) case

(1 + sin n) ≤ k(1 + cosn) (9)

(1 + sin n)

(1 + cosn)
≤ k (10)

and the g = O(f)

(1 + cosn) ≤ k′(1 + sin n) (11)

(1 + cosn)

(1 + sin n)
≤ k′ (12)

In either case, the ratio of f and g oscillates between 0 and ∞ and is periodic in n.
There is no finite positive constant which can satisfy either inequality.

• (c) f = O(g) means

f(N) ≤ kg(N) (13)

=⇒ f(f(N)) ≤ kg(f(N)) (14)

≤ kg(kg(N)) (15)

If we are able to satisfy the inequality of Eq. 15, we show that f = O(g). Calculating
the right hand side for the given functions (starting from the slowest growing ones)
indicates that f(n) = O(2n) and f(n) = Ω(nln n). Intuitively, this makes sense because
the four slowest growing functions do not involve an exponential in n, so even upon
composing the function with itself, we cannot get an exponent. All the functions
greater than f(n) do have exponential parts, so composing will make them doubly
exponential.

Explicitly, we have for g1(n) = nlnn

kg1(kg1(n)) = kg1(knln n) = k
(
knlnn

)ln(knlnn)
(16)

Choosing any k gives a growth that is slower than 2n in the asymptotic limit.

For g2(n) = 2n

kg2(kg2(n)) = kg2(k2n) = k(2k2n

) (17)

Choosing any k, we see that 2k2n

grows more quickly than 2n.

2



4.2 Dr. Falken, Would you like to play a game?

• (a) Use de Morgan’s laws ¬(x ∨ y) = x ∧ y and ¬(x ∧ y) = x ∨ y

– (i) Noting that a = ¬¬a

(a ∧ b) ∨ (c ∧ d) = ¬ [¬ ((a ∧ b) ∨ (c ∧ d))] (18)

= ¬ [¬(a ∧ b) ∧ ¬(c ∧ d)] (19)

= (a∧b)∧(c∧d) (20)

– (ii)

¬
(
(a ∨ b) ∧ (c ∨ d)

)
= ¬(a ∨ b) ∨ ¬(c ∨ d) (21)

= (a ∧ b) ∨ (c ∧ d) (22)

= (a∧b)∧(c∧d) from part (i) (23)

Lets look at a sample game tree for k = 2 to get a feel for how NAND can be used in
either case to evaluate the tree. In Fig. 1, we see a sample game tree in which Alice

1

01

1

11

1

Figure 1: A sample game with n = 2 and k = 2 with players Alice and Bob

will lose. The leaves are given at the bottom, where a 1 indicates a win for Bob and
a 0 indicates a win for Alice. The edges are colored with the person who gets to play
for that round. Starting from the bottom up, we see that since Bob goes last, he can
always pick a branch with a 1 in it. Moving up a level,we see that Alice will always
lose because no matter which of her two branches she chooses Bob is guaranteed to
win.

To evaluate this using the NAND formulas, first recall that for bits, NAND evaluates
to 0 if all bits are one and is 1 if any bit is zero. Notice that I did not color these 0s
and 1s as we still need to interpret what they represent with regard to Alice and Bob.
Given the above example, we see that when it is a given player’s turn, they have a
winning strategy if at least one branch will result in a win for that player. Since we
have decided to let 0 represent a win for Alice, on her turn, she will win if at least one
branch is 0. This means she evaluates a function which returns 0 if at least one input
is 0. In terms of the NAND function, we see that negating the output gives an AND
function which is 0 if at least one input is 0. In the example, this is just ¬NAND(1,
1)=¬0=1.

Since Bob’s strategy is the same as Alice’s (can win if at least one branch indicates a
win for him), he should apply the exact same operation—except he needs to negate the

3



inputs, since his definition of a win is opposite of Alice. In the example, Bob evaluates
NAND(¬1,¬0)=NAND(0,1)=1 and NAND(¬1,¬1)=NAND(0,0)=1.

• (b) Given that there is some level of equivalence in evaluating successive rounds of the
tree, the problem asks us to analyze the difficulty of just evaluating NAND for a tree
using the Las Vegas depth-first pruning algorithm. We consider each case individually.

– C0(n, k) In order for NAND to evaluate to 0, all k inputs must be 1. This is the
only case, so it is trivially the worst case. To evaluate this function, we have to
look at all k inputs and ensure each is 1. Thus

C0(n, k) = kC1(n − 1, k) (24)

– C1(n, k) In order for NAND to evaluate to 1, at least one input must be 0. In the
worst case, we have k− 1 inputs as 1 and one input as 0. In order to evaluate the
expected cost, define the cost of having to make x queries before seeing 0 as

C(x; n, k) = (x − 1)C1(n − 1, k) + C0(n − 1, k) (25)

and similarly, the probability of having to make x queries before seeing a 0 as

P (x; n, k) =

(
k − 1

k

)(
k − 2

k − 1

)

· · ·
(

k + 1 − x

k + 2 − x

)(
1

k + 1 − x

)

=
1

k
(26)

The expected cost is then

k∑

x=1

P (x; n, k)C(x; n, k) =
1

k

k∑

x=1

[(x − 1)C1(n − 1, k) + C0(n − 1, k)] (27)

=
1

k

[(
k∑

x=1

(x − 1)

)

C1(n − 1, k) + kC0(n − 1, k)

]

(28)

=
1

k

[(
k−1∑

x′=0

x′

)

C1(n − 1, k) + kC0(n − 1, k)

]

(29)

=
1

k

[
k(k − 1)

2
C1(n − 1, k) + kC0(n − 1, k)

]

(30)

= C0(n − 1, k) +
k − 1

2
C1(n − 1, k) (31)

– (c) Using the above definitions, we plug in C0(n− 1, k) = kC1(n− 2, k) and then
use the ansatz C1(n, k) = Arn

0 = C1(n, k) − k − 1

2
C1(n − 1, k) − kC1(n − 2, k) (32)

= Arn − k − 1

2
Arn−1 − kArn−2 (33)

= r2 − k − 1

2
r − k (34)

4



Solving this quadratic equation and taking the positive root gives

C1(n, k) =

(

k − 1 +
√

k2 + 14k + 1

4

)n

(35)

C0(n, k) = k

(

k − 1 +
√

k2 + 14k + 1

4

)n−1

(36)

The total cost is the maximum of these two. Since k > r, this means that C0(n, k)
is larger. Using the logarithm identity, alogb c = clogb a, we can bound the expression
as follows

krn−1 = kr(n−1) logk k (37)

= krn logk(kn−1) (38)

= kk(n−1) logk r (39)

≤ kn logk r (40)

= O
(

N
logk

„

k−1+

√
k2+14k+1

4

«
)

(41)

– (d) Since k = 2, we have a binary tree. Consider the first non-trival case, where
n = 2. A tree which requires examining all nodes is depicted in Fig. 2.

0 or 1

01

1

0 or 11

0 or 1

Figure 2: A tree which requires all N bits to be examined

Starting at the top, we know the left child must return 1 in order to have to
examine the right branch. The same holds for the left child’s left leaf. Since we
want this left child to return 1, its right child must be a 0 for NAND(1,0) to give
1. Now walking down the right branch from the top root, we know the left leaf of
this child must be 1 in order to have to look at the remaining leaf. However, this
final leaf is free to be either 0 or 1 and this value determines the top level value.

Generalizing, we can fix the above as the top-levels of an arbitrary depth n binary
tree. For any leaf above, we have that if it is a 1, its left and right children are
1 and 0. If the leaf is a 0, its left and right children are 1 and 1. Therefore, we
can assign the bottom leaf values using the following “string rewriting” rules. For
n ≥ 2, choose your start string S as either 1011 or 1010. Then define the bit
rewrite map r : B → B

2 as

r(0) := 11 and r(1) := 10 (42)

5



and the string rewrite map R : Bn → B
2n

R(S) :=
n⊗

k=1

r(Sk) (43)

To find the leaf node values, just evaluate

n−2
︷ ︸︸ ︷

R(R(· · · (R(S)))), where the rewrite
map is applied n − 2 times.

4.3 Clifford, but not the big red dog

• (a) Recalling the results of problem set 2, we have

HIH = H2 = I HXH = Z HZH = X HY H = −Y (44)

A similar calculation for S gives

SIS† = I SXS† = Y SZS† = Z SY S† = −X (45)

• (b) As a matrix in the computational basis, Λ(X) is






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(46)

Using the two factoids to bootstrap our way through the group. In the following, I do
not write out the explicit matrix products which can be easily performed on computer.
Intuition, or exhaustive search, allows one to recognize the form of the resulting product

1. Λ(X) · II · Λ(X) = Λ(X)2 = II

2. Λ(X) · IX · Λ(X) = IX

3. Λ(X) · IY · Λ(X) = ZY

4. Λ(X) · XI · Λ(X) = XX

5. Λ(X) · Y I · Λ(X) = Y X

We can use the second factoid to construct any missing elements. The first factoid
indicates that we are only missing IZ, ZZ, ZI, XY, XZ, Y Y, Y Z, ZX. Using the Pauli
algebra to take products, we find that

Λ(X) · IZ · Λ(X) = −i (Λ(X) · IX · Λ(X)) (Λ(X) · IY · Λ(X))

= −i(I ⊗ X)(Z ⊗ Y ) = −iY ⊗ iZ = Z ⊗ Z (47)

Λ(X) · ZI · Λ(X) = −i (Λ(X) · XI · Λ(X)) (Λ(X) · Y I · Λ(X))

= −i(X ⊗ X)(Y ⊗ X) = −iY ⊗ iZ = Z ⊗ I (48)

6



Λ(X) · XY · Λ(X) = (Λ(X) · XI · Λ(X)) (Λ(X) · IY · Λ(X))

= (X ⊗ X)(Z ⊗ Y ) = −iY ⊗ iZ = Y ⊗ Z (49)

Λ(X) · XZ · Λ(X) = (Λ(X) · XI · Λ(X)) (Λ(X) · IZ · Λ(X))

= (X ⊗ X)(Z ⊗ Z) = −iY ⊗−iY = −Y ⊗ Y (50)

Λ(X) · ZX · Λ(X) = (Λ(X) · ZI · Λ(X)) (Λ(X) · IX · Λ(X))

= (Z ⊗ I)(I ⊗ X) = Z ⊗ X (51)

Tabulating these results, we have

P Λ(X) · P · Λ(X)
II II
IX IX
IY ZY
IZ ZZ
XI XX
XX XI
XY Y Z
XZ −Y Y
Y I Y X
Y X Y I
Y Y −XZ
Y Z XY
ZI ZI
ZX ZX
ZY IY
ZZ IZ

• (c) Explicitly

TXT−1 =

(
1 0
0 eiπ/4

)(
0 1
1 0

)(
1 0
0 e−iπ/4

)

(52)

=

(
1 0
0 eiπ/4

)(
0 e−iπ/4

1 0

)

(53)

=

(
0 e−iπ/4

eiπ/4 0

)

(54)

=
1√
2

(
0 1 − i

1 + i 0

)

(55)

=
1√
2

(X + Y ) (56)

7



• (d) Using the Pauli decomposition given in the hint, we can exhaustively search to find

Λ(S)(XI)Λ(S)−1 =
1

2
(XI + XZ + Y I − Y Z) (57)

• (e) Again, using the hint (and noting Λ2(X) is its own inverse)

Λ2(X)(IIZ)Λ2(X) =
1

2
(IIZ + IZZ + ZIZ − ZZZ) (58)

You can use the fact that the resulting matrix is diagonal to limit yourself to considering
only the Pauli products involving Z and I.

8


