
UNM Physics 452/581: Introduction to Quantum Information,
Problem Set 5, Fall 2007

Instructor: Dr. Landahl
Issued: Tuesday, October 9, 2007
Due: Thursday, October 18, 2007

Do all of the problems listed below. Hand in your problem set at the beginning of class on
the desk at the front of the classroom or after class in the box in the Physics and Astronomy
main office by 5 p.m. Please put your name and/or IQI number number on your
assignment, as well as the course number (Physics 452/581). Please show all your work
and write clearly. Credit will be awarded for clear explanations as much, if not more so,
than numerical answers. Avoid the temptation to simply write down an equation and move
symbols around or plug in numbers. Explain what you are doing, draw pictures, and check
your results using common sense, limits, and/or dimensional analysis.

5.1. Exact Grover for 1 in N unordered search

For the unordered search problem on N items where exactly one item (the “winner” w)
is promised to be marked, the Grover operator is

G := −WZ0WZX , (1)

where

n := dlog2Ne Z0 := I − 2|0〉〈0| (2)

W := H⊗n ZX := I − 2|w〉〈w|. (3)

(Note that Z0 and ZX are n-qubit operators.)

We saw in class that it was convenient for the “geometric interpretation” of Grover’s
algorithm to introduce an angle α defined as

cosα :=

√
1− 1

N
sinα :=

√
1

N
(4)

so that we could write

|s〉 := W |0〉⊗n (5)

= cosα|w⊥〉+ sinα|w〉, (6)

where |w⊥〉 is a state orthogonal to |w〉.
Applying the Grover operator k times to the state |s〉 yields

Gk|s〉 := cos((2k + 1)α)|w⊥〉+ sin((2k + 1)α)|w〉. (7)
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If

k :=
π

4α
− 1

2
(8)

were an integer, then choosing k = k would yield the marked state |w〉 exactly.

(a) Evaluate k for N = 1, 2, 3, 4. Are any of these integers?

For most values of N , k is not an integer. As argued in class, by choosing k to be the
nearest integer above or below k, the result will be state with a large amplitude on the state
|w〉. Although this doesn’t yield |w〉 exactly, by repeating the operation Gk|s〉 a constant
number of times m, the probability of not finding w can be suppressed to O(N−m).

With just a little modification, Grover’s algorithm can be made exact when the number
of marked items is known. This is somewhat surprising, as classical randomized algorithms
for the unordered search problem can’t be derandomized by using this information. The
purpose of this problem is to work through such a modification. (Different modifications
having the same effect are also known.)

Consider a one-qubit gate B whose action on the state |0〉 is

B|0〉 =
√

1−Na|0〉+
√
Na|1〉 (9)

for some real number a.

(b) What range of values for a makes B a valid unitary operator? (Hint : It must be true
that ‖B|0〉‖ = 1.)

(c) The action of B must also be defined on the state |1〉. Any such action that preserves
the unitarity of B is called a unitary extension of the action defined in Eq. 9. Give an
example of a unitary extension of B. (Hint : If your answer is correct, then 〈i|B†B|j〉 = 〈i|j〉
for all i and j.)

Using the operator B, one can define an “extended” Grover operator on (n + 1) qubits
as

G′ := −W ′Z ′0W
′Z ′X , (10)

where

|w′〉 := |1〉|w〉 Z ′0 := I − 2|0〉〈0| (11)

W ′ := B ⊗H⊗n Z ′X := I − 2|w′〉〈w′|. (12)

Moreover, we can give this operator a “geometric interpretation” by defining a new angle
α′ via

cosα′ :=
√

1− a sinα′ :=
√
a. (13)
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(d) Show that the state |s′〉 := W ′|0〉⊗(n+1) can be written as

|s′〉 = cosα′|w′⊥〉+ sinα′|w′〉, (14)

where |w′⊥〉 is a state orthogonal to |w′〉.

(e) Show that Z ′X is the controlled phase-oracle gate. I.e., show that Z ′X = Λ(ZX).

Parts (b), (c), and (e) demonstrate that if one can implement G on n qubits, then one
can implement G′ on (n+ 1) qubits for any α′ in the range specified in part (b). Moreover,
the geometric interpretation provided by part (d) shows that applying the extended Grover
operator k times to the state |s′〉 yields

(G′)k|s〉 := cos((2k + 1)α′)|w′⊥〉+ sin((2k + 1)α′)|w′〉. (15)

It seems as though we are in the same situation as before—k will not generally be an
integer, so we cannot obtain |w′〉 (and hence w) exactly. However, α′ is a free parameter,
so we can choose it so that an integral choice for k will yield |w′〉 exactly. For example,
consider the choice

α′ :=
π

4
⌈
k
⌉

+ 2
, (16)

where k is given by Eq. 8.

(f) Verify that this choice of α′ leads to a value for a that is within the valid range you
specified in part (b).

(g) Show that for k =
⌈
k
⌉

and the α′ from Eq. 16 that (G′)k|s′〉 yields |w′〉 with certainty.

Note that this k = O(
√
N) as argued in class, and each G′ calls the oracle ZX once, so

this is an O(
√
N) quantum query algorithm for obtaining |w〉 with certainty.

5.2 The phase estimation algorithm

In class we showed that with probability greater than 1/2, given the ability to efficiently
compute the order modulo N of a positive integer relatively prime to N , one can efficiently
find a factor of N . We then described a quantum algorithm A that with high probability1

will, given a positive integer N and an x relatively prime to N , efficiently return positive
integers a and b relatively prime to each other such that a/b = k/r, where r is the order of
x modulo N and k is an integer that is (roughly) equiprobably chosen from {0, . . . , r − 1}.
Repeating A O(logN) times will yield a value of k relatively prime to r with probability

1 With probability greater than 4/π2, a careful analysis reveals; see Preskill’s notes Sec. 6.9.1 for details.

3



greater than 2/3, in which case b = r, the order of x modulo N . (In fact, only a constant
number of repetitions suffice—see Preskill’s notes Sec. 6.9.1 for details.)

Alexei Kitaev discovered another, perhaps more intuitive, quantum algorithm for return-
ing a fraction k/r equiprobably over k in {0, . . . , r − 1} given relatively prime integers x
and N such that the order of x modulo N is r. His algorithm relies on a general-purpose
algorithm called the phase estimation algorithm described in Sec. 5.2 in your textbook by
Nielsen and Chuang. Given the ability to perform Λ(U2j

) for j = 0, . . . ,m and an eigenstate
|u〉 of U with eigenvalue e2πiϕ, the phase estimation algorithm estimates the value of ϕ to m
bits of precision.

The way that the phase estimation algorithm reproduces the action of A is as follows.
Consider the unitary operator U defined on n = dlog2Ne qubits as follows:

U |y〉 =

{
|xy mod N〉 y < N

|y〉 N ≤ y ≤ 2n.
(17)

The eigenvalues of U are the rth roots of unity, λk = e2πik/r, because U r = I. Moreover,
the n-qubit state |1〉 is the uniform superposition over all eigenstates |λk〉, as shown in
Sec. 5.3 in your textbook by Nielsen and Chuang. Hence, calling the phase estimation
algorithm on |1〉 and U will yield a fraction k/r, where k is selected uniformly at random
from {0, . . . , r − 1}.

In this problem, we derive the phase estimation algorithm as a “feedback filter,” at least
within a proscribed framework. Consider the “quantum feedback” circuit below.

Figure 1: Feedback circuit for phase estimation.

The state |u〉 input to this circuit is an eigenstate of U such that U |u〉 = e2πiϕ |u〉 and
Rz(θ) denotes the spin-1/2 rotation matrix exp(−iπθσz/2). After the jth pass through the
loop, the classical output bit zj and quantum state |u〉 are fed back into the loop as indicated.
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This circuit has two “control parameters,” θj and kj. θj is a function of both the round
j and all previous output bits {zl}l<j, while kj is solely a function of the round j.

The phase 0 ≤ ϕ < 1 is unknown but to make this problem simpler, let us suppose that
it is guaranteed to have only n bits of precision, i.e., ϕ = 0.ϕ1ϕ2 . . . ϕn in (fractional) binary.
This feedback circuit is said to be an “optimal exact phase estimator” if and only if the bits
z1, . . . , zn determine ϕ exactly. In this problem, you will show that this circuit is indeed an
optimal exact phase estimator if θj and kj are chosen appropriately.

(a) After passing through this circuit at round j, what are the probabilities of measuring
zj = 0 and of measuring zj = 1 as functions of kj and θj?

(b) Show that it is possible to choose k1 and θ1 so that z1 = ϕn with probability one.

(c) Using the choices of k1 and θ1 from part (b), show that it is possible to choose k2 and
θ2(z1) so that z2 = ϕn−1.

(d) In general, what choices of kj and θj(z1, . . . , zj−1) yield zj = ϕn−j+1 with probability
one? These choices are the “control law” that makes this circuit an optimal exact phase
estimator.
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