
UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 5, Fall 2007

5.1 Exact Grover for 1 in N Ordered Search

• (a) For N = 1 and 4, k̄ is an integer.

N k̄ = π
4α
− 1

2

1 0
2 1

2

3 −1
2

+ π

4ArcSin
h

1√
3

i ≈ 0.776

4 1

• (b) In order to B to be unitary, B†B = I. We will assume N and a are real and
non-negative.

1 = 〈0|0〉 (1)

= 〈0|B†B|0〉 (2)

=
(√

1−Na〈0|+
√

Na〈1|
)(√

1−Na|0〉+
√

Na|1〉
)

(3)

= ‖
√

(1−Na)‖2〈0|0〉+ ‖Na‖2〈1|1〉 (4)

= 1 (5)

For this last equality to hold, Na must be between 0 and 1. This can also be seen
by noting that the amplitudes must give probabilities that are between 0 and 1. For
instance, ‖〈0|B|0〉‖2 = Na and ‖〈1|B|0〉‖2 = 1−Na must be between 0 and 1. Thus,
a should be between 0 and 1

N
. If a were possibly negative, then − 1

N
≤ a ≤ 1

N
.

• (c) Symmetry suggests

B|1〉 = −
√

Na|0〉+
√

1−Na|1〉 (6)

We then check

1 = 〈1|1〉 (7)

=
(
−
√

Na〈0|+
√

1−Na〈1|
)(

−
√

Na|0〉+
√

1−Na|1〉
)

(8)

= Na〈0|0〉+ (1−Na)〈1|1〉 (9)

= 1 (10)

and

0 = 〈0|1〉 (11)

=
(
−
√

Na〈0|+
√

1−Na〈1|
)(√

1−Na|0〉+
√

Na|1〉
)

(12)

= −
√

Na
√

1−Na〈0|0〉+
√

Na
√

1−Na〈1|1〉 (13)

= 0 (14)

That 〈1|0〉 = 0 follows from this last result.
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• (d) Calculating explicitly (and using W |0〉⊗n =
√

1− 1/N |w⊥〉+
√

1/N |w〉 from earlier
in the problem)

W ′|0〉⊗(n+1) = B ⊗H⊗n|0〉 ⊗ |0〉⊗n (15)

=
[√

1−Na|0〉+
√

Na|1〉
]
⊗

[√
1− 1

N
|w⊥〉+

√
1

N
|w〉

]
(16)

=

√
(1−Na)(1− 1

N
)|0〉|w⊥〉+

√
Na− a|1〉|w⊥〉+

√
1

N
− a|0〉|w〉︸ ︷︷ ︸

:=cos α′|w′⊥〉

(17)

+
√

a|1〉|w〉︸ ︷︷ ︸
=sin α′|w′〉

(18)

= cos α′|w′⊥〉+ sin α′|w′〉 (19)

= |s′〉 (20)

where we have simply lumped the terms orthogonal to |w′〉 = |0〉|w〉 into an orthogonal
term |w′⊥〉 with the appropriate phase.

• (e) We write
Z
′

X = I − 2|w′〉〈w′| = I − 2|1〉〈1| ⊗ |w〉〈w| (21)

If the first qubit is in the state |0〉, then Z
′
X = I. If it is in state |1〉, then Z

′
X performs

ZX on the remaining qubits. By definition, this is the controlled gate, Λ(ZX).

• (f) Using the definitions given in the problem, we calculate

a = sin2 α′ = sin2 π

4dk̄e+ 2
(22)

≤ sin2 π

4dk̄e+ 2
(23)

= sin2 α (24)

=
1

N
(25)

• (g) In order to yield |w′〉 with certainty, we need sin((2k+1)α′) = 1 or (2k+1)α′ = π/2.
Setting k = dk̄e, we find

(2dk̄e+ 1)α′ =
(2dk̄e+ 1)π

(4dk̄e+ 2)
=

(2dk̄e+ 1)π

2(2dk̄e+ 1)
=

π

2
(26)

5.2 The phase estimation algorithm

• (a) At the beginning of round j, the input state is |0〉|u〉. Passing through the first
Hadamard gives

1√
2

[|0〉+ |1〉] |u〉 (27)
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The controlled U2kj
gate gives the state

1√
2

[
|0〉+ exp(2πiφ2kj)|1〉

]
|u〉 (28)

Since the |u〉 can be factored out for the rest of the circuit, we omit it for the rest of
the calculation. Noting that exp(−iθZ/2)|0〉 = exp(−iθ/2)|0〉 and exp(−iθZ/2)|1〉 =
exp(iθ/2)|1〉, we find

e−iθjZ/2 1√
2

[
|0〉+ exp(2πiφ2kj)|1〉

]
(29)

=
1√
2

[
e−iθj/2|0〉+ exp(2πiφ2kj + iθj/2)|1〉

]
(30)

≡ 1√
2

[
|0〉+ exp(2πiφ2kj + iθj)|1〉

]
(31)

(32)

where in the last step we have factored out an irrelevant overall phase e−iθj/2. The
second Hadamard transforms the state to

1√
2

[
H|0〉+ exp(2πiφ2kj + iθj)H|1〉

]
(33)

=
1

2

[
|0〉+ |1〉+ exp(2πiφ2kj + iθj)(|0〉 − |1〉

]
(34)

=
1

2

[(
1 + exp(2πiφ2kj + iθj)

)
|0〉+

(
1− exp(2πiφ2kj + iθj)

)
|1〉
]

(35)

The probability of measuring zj is given by the norm of the coefficient of each |j〉 term
above. Thus the probabilities are

P (zj = 0) =
1

4
‖1 + exp

[
i(2πφ2kj + θj)

]
‖2 (36)

P (zj = 1) =
1

4
‖1− exp

[
i(2πφ2kj + θj)

]
‖2 (37)

• (b) Recall that

φ = 0.φ1φ2 . . . φn =
1

2
φ1 +

1

22
φ2 + · · ·+ 1

2n
φn (38)

Taking k1 = n− 1, we have

2n−1φ = φ1φ2 . . . φn−1.φn (39)

Expanding the exponent into products, we have(
n−1∏
m=1

ei2n−mπφm

)
︸ ︷︷ ︸

=1

eiπφn+iθ1 (40)
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Setting θ1 = 0, the probabilities are then

P (z1 = 0) =
1

4
‖1 + exp [iπφn]‖2 (41)

P (z1 = 1) =
1

4
‖1− exp [iπφn]‖2 (42)

So that if φn = 0, P (z1 = 0) is one and P (z1 = 1) is zero. If φn = 1, P (z1 = 0) is zero
and P (z1 = 1) is one. Thus with probability one, z1 = φn.

• (c) Inspired by part (b), we proceed in a similar manner by choosing k2 = n−2 so that

2n−2φ = φ1φ2 . . . φn−2.φn−1φn (43)

Expanding the exponent into products again , we have(
n−2∏
m=1

ei2n−m−1πφm

)
︸ ︷︷ ︸

=1

eiπφn−1+i π
2
φn+iθ1 (44)

Since we know φn with certainty, we choose θ1 = −π
2
φn, giving probabilities

P (z2 = 0) =
1

4
‖1 + exp [iπφn−1]‖2 (45)

P (z2 = 1) =
1

4
‖1− exp [iπφn−1]‖2 (46)

As in part (b), these yield z2 = φn−1 with certainty.

• (d) Given the last two steps, the general procedure is as follows. On step j, choose
kj = n− j so that

2n−jφ = φ1φ2 . . . φn−j.φn−j+1 . . . φn (47)

Expanding the exponent into products again, we have(
n−j∏
m=1

ei2n−m−(j−1)πφm

)
︸ ︷︷ ︸

=1

exp
[
iπφn−j+1 + i

π

2
φn−j+2 + . . . + i

π

21−j
φn + iθj

]
(48)

Since we know φn−j+2 through φn at stage j, we choose

θj = −π

[
φn−j+2

2
+

φn−j+3

22
+ . . . +

φn

21−j

]
(49)

to cancel out all but the φn−j+1 exponential. This gives probabilities

P (zj = 0) =
1

4
‖1 + exp [iπφn−j+1]‖2 (50)

P (zj = 1) =
1

4
‖1− exp [iπφn−j+1]‖2 (51)

so that zj = φn−j+1 with certatinty.
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