
UNM Physics 452/581: Introduction to Quantum Information,
Problem Set 6, Fall 2007

Instructor: Dr. Landahl
Issued: Monday, November 12, 2007
Due: Tuesday, November 27, 2007

Do all of the problems listed below. Hand in your problem set at the beginning of class on
the desk at the front of the classroom or after class in the box in the Physics and Astronomy
main office by 5 p.m. Please put your name and/or IQI number number on your
assignment, as well as the course number (Physics 452/581). Please show all your work
and write clearly. Credit will be awarded for clear explanations as much, if not more so,
than numerical answers. Avoid the temptation to simply write down an equation and move
symbols around or plug in numbers. Explain what you are doing, draw pictures, and check
your results using common sense, limits, and/or dimensional analysis.

6.1. Quantum division.

The subsystems of a bipartite system can have different dimensions. Consider the fol-
lowing tripartite states:

|GHZ 〉 :=
1√
2

(|000〉+ |111〉), |W 〉 :=
1√
3

(|001〉+ |010〉+ |100〉).

Let the names of the three subsystems be A, B, and C. (By symmetry, it doesn’t matter
which is which.)

(a) Compute ρAB and ρC for |GHZ 〉 and for |W 〉.
(b) Compute the Schmidt decomposition over the partition AB|C for |GHZ 〉 and for |W 〉.
(c) Compute the eigenvalues of ρAB and ρC for |GHZ 〉 and for |W 〉. Notice anything

interesting about how the eigenvalues of ρAB and ρC are related?

6.2. Quantum tintinnabulation.

The Bell states are a basis over two qubits consisting of the four entangled states

|Φ±〉 :=
1√
2

(|00〉 ± |11〉), |Ψ±〉 :=
1√
2

(|01〉 ± |10〉).

A Werner state of fidelity F is the mixed state

ρF := F |Φ+〉〈Φ+|+ 1− F
3

(|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|).

(a) Show that the depolarizing channel with error probability p acting on half of the
entangled state |Φ+〉 yields a Werner state. Express the fidelity of the Werner state F in
terms of p.
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(b) Show that the Werner state from part (a) can also be written as

ρF := λ|Φ+〉〈Φ+|+ 1− λ
4

(I ⊗ I),

and express λ in terms of F .

6.3. Holy Schmidt!

Find the Schmidt decomposition and calculate ρA for each of the following states. (Note:
The last two parts will probably take more work than the first three.)

(a) 1√
2
(|00〉 − |11〉).

(b) 1
2
(|00〉+ |01〉+ |10〉+ |11〉).

(c) 1
2
(|00〉+ |01〉+ |10〉 − |11〉).

(d) 1√
3
(|00〉+ |01〉+ |10〉).

(e) CNOT (H⊗Y−2π/3)|00〉, where Y−2π/3 is the spin-1/2 rotation matrix about the ŷ-axis
by the angle −2π/3.

6.4. Trace distance.

In class we defined the trace distance between two density matrices as

D(ρ, σ) :=
1

2
‖ρ− σ‖tr,

where the trace norm is defined by

‖A‖tr := tr
√
A†A. (1)

(a) Show that the trace distance between density matrices ρ and σ is equal to half the
sum of the absolute values of the eigenvalues of ρ− σ.

(b) Compute the trace distance between 3
4
|0〉〈0|+ 1

4
|1〉〈1| and 2

3
|+〉〈+|+ 1

3
|−〉〈−|.

(c) Compute the trace distance between two arbitrary pure states as a function of the
angle θ between them. Note that without loss of generality these two states can be expressed
as |ψ〉 = sin θ/2|e0〉+ cos θ/2|e1〉 and |ϕ〉 = − sin θ/2|e0〉+ cos θ/2|e1〉 by a suitable choice of
basis {|e0〉, |e1〉}.

(d) Compute ‖|ψ〉 − |ϕ〉‖2 in terms of θ, where ‖ · ‖ denotes the usual complex vector
norm on quantum states. Use this result and the result of part (b) to derive the following
bound on pure state distances:

D(|ψ〉〈ψ|, |ϕ〉〈ϕ|) ≤ ‖|ψ〉 − |ϕ〉‖.

(e) Given the bound from part (c), it is tempting to use ‖|ψ〉 − |ϕ〉‖ as a measure of
distance between pure states. Explain why this is probably not a good idea. (Hint : When
are two pure states indistinguishable?)
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6.5. Double damplitude.

In class, we defined the amplitude-damping channel A as the channel with Kraus opera-
tors

A0 =

(
1 0
0
√

1− p

)
, A1 =

(
0
√
p

0 0

)
,

where p = 1− e−t/T1 .

Let f(|ψ〉) denote the fidelity F (|ψ〉〈ψ|, A(|ψ〉〈ψ|)) between a pure state |ψ〉 and its
output under the amplitude damping channel.

(a) Compute f(|+〉) as a function of p. Plot the derived function f(t). What is
limt→∞ f(t)?

(b) Use calculus to find the qubit state |ψ〉 that minimizes f(|ψ〉). Compute f(|ψ〉). Plot
the derived function f(t). What is limt→∞ f(t)?

A dual-rail encoding of a qubit is the map

|0〉 7→ |0〉 := |01〉, |1〉 7→ |1〉 := |10〉.

It allows a qubit to be encoded, for example, by a photon that is in one of two possible
modes. In the following, let |ϕ〉 denote the dual-rail qubit state α|0〉+β|1〉, where α and β are
complex numbers satisfying |α|2+|β|2 = 1. Also let g(|ϕ〉) denote the fidelity F (|ϕ〉〈ϕ|, (A⊗
A)(|ϕ〉〈ϕ|)).

(c) Show that A⊗A acting on |ϕ〉 has the same effect as the quantum operation whose
Kraus operators are

E0 =
√

1− p I, E1 =
√
p |00〉〈01|, E2 =

√
p |00〉〈10|.

(Note: These Kraus operators describe a trace-decreasing map, so they don’t obey the
normalization condition

∑
iE
†
iEi = I discussed in class—don’t worry about this for this

problem.)

(d) Compute g(|ϕ〉) as a function of p for the worst-case |ϕ〉. How does this worst-case g
compare to the worst-case f from part (b)?

(e) Suppose one measures the observable ZZ after A ⊗ A has acted on |ϕ〉. (For a
photonic implementation, this is akin to measuring the total photon number.) What is the
probability of obtaining the outcome |00〉? When this outcome is not obtained, what is the
resulting state, and what is its fidelity with respect to |ϕ〉 as a function of t? Considering
these results, explain why this dual-rail encoding is called an error-detecting code for the
amplitude-damping channel.

6.6. Extra credit: High fidelity.

(a) (Warmup I.) Show that the length of a qubit’s Bloch vector ~r is related to the density
matrix ρ describing it as:

|~r| =
√

1− 4 det ρ.
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(b) (Warmup II.) Show that the characteristic equation for the eigenvalues of any 2 × 2
matrix M can be written as

λ2 − λ trM + detM = 0.

Use this equation to express the trace and determinant of a 2× 2 matrix M in terms of its
eigenvalues λ1 and λ2.

(c) Show that the (squared) fidelity between two qubit states can be expressed as

F 2(ρ, σ) =
1

2

(
1 + ~r · ~s+

√
(1− r2)(1− s2)

)
,

where ~r and ~s are the Bloch vectors for the density matrices ρ and σ respectively. (Hint :
Use what you learned in the “Warmup” parts to this problem.)

(d) In class, it was claimed that the fidelity F (ρ, σ) := tr
√
ρ1/2σρ1/2 is symmetric in its

arguments. Written this way, the symmetry is by no means obvious. One way to make it
clearer is to rewrite the fidelity in terms of the trace norm:

F (ρ, σ) := ‖ρ1/2σ1/2‖tr,

where

‖A‖tr := tr
√
A†A. (2)

Show that the fidelity is symmetric in its arguments by showing that for any Hermitian
matrices A and B,

‖AB‖tr = ‖BA‖tr,

(Hint : Show that ABBA and BAAB have the same eigenvalues.)

6.7. Extra credit: Miscellaneous channel problems.

(a) Recall from problem 2.2 (i) in the second problem set the n-qubit operators Xa and
Za defined as

Xa :=
2n−1∑
j=0

|j ⊕ a〉〈j|, Za :=
2n−1∑
j=0

(−1)j·a|j〉〈j|.

Show that the quantum operation having 4n Kraus operators XaZb/2
n/2 acting on a n-qubit

density matrix ρ will completely randomize it (i.e., it maps ρ to I/2n). (Hint : Consider the
action of the channel on |i〉〈j|.)

(b) Consider the quantum operation having the three Kraus operators

A0 =

√
5

2
√

77

(
3 −3

√
2√

2 −2

)
, A1 =

√
5

2
√

77

(
3 3

√
2

−
√

2 −2

)
, A2 =

1√
14

(
3 0
0 −2

)
.
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There are two distinguishable input pure states that are taken to output pure states by
this quantum operation. What are these input pure states? (Hint : For the output on a pure
state |ψ〉 to be pure, each of the Ai|ψ〉 must be proportional.)

(c) Let E be a quantum operation that preserves two distinct non-orthogonal pure states.
Prove that it must be the case that E is the identity map on the space spanned by these
states.

(d) Suppose a qubit first transforms under the phase-damping channel then transforms
under the amplitude-damping channel. Show that the linear dependence of the operators
one obtains for this net channel allows one to represent it by only three Kraus operators.
(Hint : Start with a compact OSR for the phase-damping channel.)
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