
UNM Physics 452/581: Introduction to Quantum Information,
Solution Set 6, Fall 2007

6.1 Quantum division

• (a) |GHZ〉 = 1√
2
(|000〉+ |111〉) and |W 〉 = 1√

3
(|001〉+ |010〉+ |100〉). In the follow-

ing, I take A,B,C to represent the first, second and third qubit respectively.

– First consider |GHZ〉.

ρ
(GHZ)
AB = trC |GHZ〉〈GHZ| =

1∑
i=0

C〈i|GHZ〉〈GHZ|i〉C (1)

= C〈0|GHZ〉〈GHZ|0〉C + C〈1|GHZ〉〈GHZ|1〉C (2)

=
1

2
C〈0|

(
|000〉〈000|+ |000〉〈111|+ |111〉〈000|+ |111〉〈111|

)
|0〉C (3)

+
1

2
C〈1|

(
|000〉〈000|+ |000〉〈111|+ |111〉〈000|+ |111〉〈111|

)
|1〉C (4)

=
1

2

(
|00〉〈00|+ |11〉〈11|

)
(5)

and

ρ
(GHZ)
C = trC |GHZ〉〈GHZ| =

11∑
i=00

AB〈i|GHZ〉〈GHZ|i〉AB (6)

= AB〈00|GHZ〉〈GHZ|00〉AB + AB〈01|GHZ〉〈GHZ|01〉AB (7)

+ AB〈10|GHZ〉〈GHZ|10〉AB + AB〈11|GHZ〉〈GHZ|11〉AB (8)

=
1

2
AB〈00|

(
|000〉〈000|+ |000〉〈111|+ |111〉〈000|+ |111〉〈111|

)
|00〉AB

(9)

+
1

2
AB〈11|

(
|000〉〈000|+ |000〉〈111|+ |111〉〈000|+ |111〉〈111|

)
|11〉AB

(10)

=
1

2

(
|0〉〈0|+ |1〉〈1|

)
(11)

Where in going to (9), I have omitted the |01〉AB and |10〉AB terms which go to
zero.

– Now consider |W 〉. Since we are starting to get the hang of the partial trace,
I will begin to drop more intermediary terms. In particular, I will immediately
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drop terms from the density matrix that will go to zero.

ρ
(W )
AB = trC |W 〉〈W | =

1∑
i=0

C〈i|W 〉〈W |i〉C (12)

=
1

3

1∑
i=0

C〈i|
(
|001〉〈001|+ |010〉〈010|+ |100〉〈100|+ |010〉〈100|+ |100〉〈010|

)
|i〉C

=
1

3

(
|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |01〉〈10|+ |10〉〈01|

)
(13)

and

ρ
(W )
C = trAB |W 〉〈W | =

11∑
i=00

AB〈i|W 〉〈W |i〉AB (14)

=
1

3

11∑
i=00

AB〈i|
(
|001〉〈001|+ |010〉〈010|+ |100〉〈100|

)
|i〉AB (15)

=
1

3

(
|1〉〈1|+ 2|0〉〈0|

)
(16)

• (b) While we could work out the singular value decomposition explicitly, the structure
of these two state make it easy enough to write the Schmidt decomposition directly.

– AB|C partition for |GHZ〉.

|GHZ〉 =
1√
2
|00〉AB|0〉C +

1√
2
|11〉AB|1〉c (17)

So the basis B(GHZ) for AB is B(GHZ)
AB = {|00〉, |11〉} and for C is B(GHZ)

C =
{|0〉, |1〉} with Schmidt coefficients { 1√

2
, 1√

2
}.

– AB|C parition for |W 〉.

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (18)

=
1√
3
|00〉AB|1〉C +

1√
3

(|01〉AB + |10〉AB) |0〉C (19)

=
1√
3
|00〉AB|1〉C +

√
2

3
|Ψ+〉AB|0〉C (20)

(21)

where |Ψ+〉AB = 1√
2
(|01〉+ |10〉). The Schmidt bases are B(W )

AB = {|00〉, |Ψ+〉}

and B(W )
C = {|1〉, |0〉} and the Schmidt coefficients are {

√
1
3
,
√

2
3
}.

• (c)
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– For the |GHZ〉 state, both reduced density matrices are already diagonal in the

computational basis. We read off the eigenvalues of ρ
(GHZ)
AB as {1

2
, 0, 0, 1

2
}. Simi-

larly, for ρ
(GHZ)
C , we have {1

2
, 1

2
}.

– For |W 〉, only ρ
(W )
C is diagonal in the computational basis. We can read of the

eigenvalues for it as {1
3
, 2

3
}. ρ

(W )
AB is a bit trickier, but we can use the Schmidt

composition to calculate the diagonal form. If we let |i〉AB and |i〉C represent the
i-th element of the two different Schmidt bases and λi the corresponding (real)
Schmidt coefficient, we have

ρ
(W )
AB =

∑
i

C〈i|W 〉〈W |i〉C (22)

=
∑

i

C〈i|
(∑

j

λ2
jAB|j〉C |j〉〈j|AB〈j|C

)
|i〉C (23)

=
∑
i,j

λ2
jAB|j〉〈j|AB‖C〈i|j〉C‖2 (24)

=
∑
i,j

λ2
jAB|j〉〈j|ABδij (25)

so that, in the basis BW
AB defined in part (b), we have

ρ
(W )
AB =

1

3
|00〉〈00|AB +

2

3
|Ψ+〉〈Ψ+|AB (26)

Thus the eigenvalues are {1
3
, 2

3
, 0, 0}.

From this last calcuation, we notice that both reduced density matrices have the same
non-zero eigenvalues, which are just the Schmidt coefficients squared.

6.2 Quantum tintinabulation

• (a) From class, recall that the depolarizing channel acts as

E(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (27)

Clearly, the (1− p) term will leave the input state unchanged; it remains to see what
the Pauli terms do to the input state.

X|Φ+〉〈Φ+|X =
1

2
X
(
|00〉+ |11〉

)(
〈00|+ 〈11|

)
X (28)

=
1

2

(
|10〉+ |01〉

)(
〈10|+ 〈01|

)
(29)

= |Ψ+〉〈Ψ+| (30)

and

Y |Φ+〉〈Φ+|Y =
1

2
Y
(
|00〉+ |11〉

)(
〈00|+ 〈11|

)
Y (31)

=
1

2

(
i|10〉 − i|01〉

)(
−i〈10|+ i〈01|

)
(32)

= |Ψ−〉〈Ψ−| (33)
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and

Z|Φ+〉〈Φ+|Z =
1

2
Z
(
|00〉+ |11〉

)(
〈00|+ 〈11|

)
Z (34)

=
1

2

(
|00〉 − |11〉

)(
〈00| − 〈11|

)
(35)

= |Φ−〉〈Φ−| (36)

Therefore,

E(|Φ+〉〈Φ+|) = (1− p)|Φ+〉〈Φ+|+ p

3

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|

)
(37)

so that F = 1− p.

• (b) Note that

I ⊗ I = |00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11|
= |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| (38)

ρF = F |Φ+〉〈Φ+|+ 1− F

3

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|

)
(39)

= F |Φ+〉〈Φ+|+ 1− F

3

(
I ⊗ I − |Φ+〉〈Φ+|

)
(40)

=
4F − 1

3
|Φ+〉〈Φ+|+ 1− F

3
I ⊗ I (41)

Reading off, we see that λ = 4F−1
3

.

6.3 Holy Schmidt!

In the following, I will use the result from question 5.3c, where we found that the reduced
density matrix (ρA) for a Schmidt decomposition

∑
i λi|i〉A|i〉B is simply

∑
i λ

2
i A|i〉〈i|A

• (a)
1√
2
(|00〉 − |11〉) =

1√
2
|0〉A|0〉B −

1√
2
|1〉A|1〉B (42)

The two basis are {|0〉A, |1〉A} and {|0〉B,−|1〉B} and the coefficients are { 1√
2
, 1√

2
}.

Finally

ρA =
1

2
(|0〉〈0|+ |1〉〈1|) (43)

• (b)

1

2
(|00〉+ |01〉+ |10〉+ |11〉) =

1

2
(|0〉A(|0〉B + |1〉B) + |1〉A(|0〉B + |1〉B)) (44)

=
1

2
(|0〉A + |1〉A)⊗ (|0〉B + |1〉B) (45)

= |+〉A|+〉B (46)
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Since this is a pure state, we have only one element in the Schmidt decomposition,
which is the |+〉 state for both sub-systems. The corresponding Schmidt coefficient is
1. Finally

ρA = |+〉〈+| = 1

2
(|0〉〈0|+ |1〉〈0|+ |0〉〈1|+ |1〉〈1|) (47)

• (c)

1

2
(|00〉+ |01〉+ |10〉 − |11〉) =

1

2
(|0〉A(|0〉B + |1〉B) + |1〉A(|0〉B − |1〉B)) (48)

=
1√
2
|0〉A|+〉B +

1√
2
|1〉A|−〉B (49)

The basis for system A is then {|0〉A, |1〉A} and for B is {|+〉B, |−〉B} with Schmidt
coefficients { 1√

2
, 1√

2
}. Finally

ρA =
1

2
(|0〉〈0|+ |1〉〈1|) (50)

• (d) Unfortunately, I don’t see an easy way to group terms, so I will resort to calculating
the singular value decomposition of the matrices. The matrix we look to decompose is

a =
1√
3

(
1 1
1 0

)
(51)

which encodes the state 1√
3
(|00〉+ |01〉+ |10〉) in the computational basis. Calculating

the decomposition in Matlab, I found

a =

(
0.8507 0.5257
0.5257 −0.8507

)
︸ ︷︷ ︸

u

(
0.9342 0

0 0.3568

)
︸ ︷︷ ︸

d

(
0.8507 0.5257
−0.5257 0.8507

)
︸ ︷︷ ︸

v

(52)

We then define the basis for systemA by |i〉A =
∑

j uji|j〉A. This results in {0.8507|0〉A+
0.5257|1〉A, 0.5257|0〉A − 0.8507|1〉A}. We define the basis for B by |j〉B =

∑
k vik|k〉B,

giving {0.8507|0〉B + 0.5257|1〉B,−0.5257|0〉B + 0.8507|1〉B}. The Schmidt coefficients
are just the diagonal entries of d, {0.9342, 0.3568}. Calculating ρA directly (omitting
matrix elements which clearly drop out)

ρA = trB ρ =
1

3

∑
i

B〈i|
(
|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |00〉〈10|+ |10〉〈00|

)
|i〉B

=
1

3

(
2|0〉〈0|+ |1〉〈1|+ |0〉〈1|+ |1〉〈0|

)
(53)
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• (e) First, we calculate the final state (recall Y−2π/3 = I cos π
3

+ iY sin π
3
)

CNOT (H ⊗ Y−2π/3)|00〉 = CNOT (H|0〉A ⊗ Y−2π/3|0〉B) (54)

= CNOT
[ 1√

2
(|0〉A + |1〉A)⊗ (

1

2
|0〉B −

√
3

2
|1〉B

]
(55)

=
1√
2
|0〉A ⊗

(
1

2
|0〉B −

√
3

2
|1〉B

)
+

1√
2
|1〉A ⊗

(
1

2
|1〉B −

√
3

2
|0〉B

)
=

1

2
√

2

[
|00〉 −

√
3|01〉 −

√
3|10〉+ |11〉

]
(56)

Again, we calculate the SV D of

B =
1

2
√

2

(
1 −

√
3

−
√

3 1

)
(57)

which encodes the state in the computational basis. Using Mathematica, we find

B =

(
− 1√

2
− 1√

2
1√
2

− 1√
2

)
︸ ︷︷ ︸

u

 √
2+
√

3

2
0

0

√
2−
√

3

2


︸ ︷︷ ︸

d

(
− 1√

2
1√
2

1√
2

1√
2

)
︸ ︷︷ ︸

v

(58)

Following part (d), we see that the basis forA is {|−〉A,−|+〉A} and forB is {|−〉B, |+〉B}
with Schmidt coefficients {

√
2+
√

3

2
,

√
2−
√

3

2
}. Notice that I have been able to eliminate

an overall minus sign for the first basis elements, but not for the second set. Lastly,
we calculate the reduced density matrix directly to find

ρA =
2 +

√
3

4
|−〉〈−|+ 2−

√
3

4
|+〉〈+| (59)

=
1

2
|0〉〈0| −

√
3

4
|0〉〈1| −

√
3

4
|1〉〈0|+ 1

2
|1〉〈1| (60)

6.4 Trace distance

• (a) Let A = ρ− σ which is diagonalized as A =
∑

i λi|i〉〈i|, then the trace distance is

D(ρ, σ) =
1

2
‖ρ− σ‖tr =

1

2
‖A‖tr

=
1

2
tr
√
A†A =

1

2
tr

√√√√∑
ij

λi|i〉 〈i|j〉︸︷︷︸
δij

〈j|λ∗k

=
1

2
tr
∑

i

√
|λi|2|i〉〈i|

=
1

2

∑
i

|λi| (61)

6



• (b) Given the previous result, we find the difference of the two matrices

ρ− σ =
3

4
|0〉〈0|+ 1

4
|1〉〈1| − 2

3
|+〉〈+| − 1

3
|−〉〈−| (62)

=
3

4
|0〉〈0|+ 1

4
|1〉〈1| − 1

3

(
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

)
− 1

6

(
|0〉〈0| − |1〉〈0| − |0〉〈1|+ |1〉〈1|

)
(63)

=
1

4
|0〉〈0| − 1

4
|1〉〈1| − 1

6
|0〉〈1| − 1

6
|1〉〈0| (64)

=

(
1
4

−1
6

−1
6

−1
4

)
(65)

The eigenvalues are ±
√

13/12 so that the trace distance is
√

13/12.

• (c) Define ψ = sin θ/2|e0〉+ cos θ/2|e1〉 and φ = − sin θ/2|e0〉+ cos θ/2|e1〉. Again, we
first calculate the difference of the density matrices.

|ψ〉〈ψ| − |φ〉〈φ| = sin2 θ

2
|e0〉〈e0|+

1

2
sin θ|e0〉〈e1|+

1

2
sin θ|e0〉〈e1|+ cos2 θ

2
|e1〉〈e1| (66)

− sin2 θ

2
|e0〉〈e0|+

1

2
sin θ|e0〉〈e1|+

1

2
sin θ|e0〉〈e1| − cos2 θ

2
|e1〉〈e1| (67)

= sin θ
(
|e0〉〈e1|+ |e1〉〈e0|

)
(68)

The eigenvalues are ± sin θ, giving a trace distance of sin θ.

• (d) Using the definitions above, we have

‖ψ − φ‖2 = ‖2 sin
θ

2
|e0〉‖2 = 4 sin2 θ

2
(69)

Thus ‖ψ−φ‖ = 2 sin θ
2

and comparing to part (b), we find that sin θ ≤ 2 sin θ
2
, indicating

D(|ψ〉〈ψ|, |φ〉〈φ|) ≤ ‖φ− ψ‖.

• (e) Using our examples, consider θ = π, in which case the two states have different
phases, e.g ψ = |0〉, φ = −|0〉. Under the quantum norm, we have ‖|0〉 − (−|0〉)‖ = 2.
However, the trace norm is 0. Thus, the quantum norm for the difference of states
(which is not necessarily a quantum state), picks up the non-physical phase difference,
while the trace norm does not.

6.5 Double Amplitude

The amplitude channel A, with p = 1− e−t/T1 , has Krause operators

A0 =

(
1 0
0

√
1− p

)
A1 =

(
0

√
p

0 0

)
(70)
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• (a) First, we calculate the action of the channel on |+〉 = 1√
2
(|0〉+ |1〉).

A(|+〉〈+|) =
1

2

∑
i

Ai

(
1 1
1 1

)
A†i (71)

=
1

2

(
1 0
0

√
1− p

)(
1 1
1 1

)(
1 0
0

√
1− p

)
+

1

2

(
0

√
p

0 0

)(
1 1
1 1

)(
0 0√
p 0

)
(72)

=
1

2

(
1 1√

1− p
√

1− p

)(
1 0
0

√
1− p

)
+

1

2

(√
p

√
p

0 0

)(
0 0√
p 0

)
(73)

=
1

2

(
1

√
1− p√

1− p 1− p

)
+

1

2

(
p 0
0 0

)
(74)

=
1

2

(
1 + p

√
1− p√

1− p 1− p

)
(75)

Since the initial state is a pure state, the fidelity (squared) is just

F 2(|+〉〈+|,A(|+〉〈+|)) = 〈+|1
2

(
1 + p

√
1− p√

1− p 1− p

)
|+〉 (76)

=
1

4

(
1 1

)( 1 + p
√

1− p√
1− p 1− p

)(
1
1

)
(77)

=
1

4

(
1 1

)(1 + p+
√

1− p
1− p+

√
1− p

)
(78)

=
1

4
(2 + 2

√
1− p) (79)

=
1

2
(1 +

√
1− p) (80)

=
1

2
(1 + e

− t
2T1 ) (81)

Thus, f(t) =
√
F 2 = 1√

2

√
1 + e

− t
2T1 .
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We see (and can calculate) that limt→∞ f(t) = 1√
2
.

• (b) We know that a general qubit state can be written as |ψ〉 = cos θ
2
|0〉 + eiφ sin θ

2
|1〉.

The amplitude-damping channel changes the state to

A(|ψ〉〈ψ|) =
1

2

∑
i

Ai

(
cos2 θ

2
e−iφ sin θ

2

eiφ sin θ
2

sin2 θ
2

)
A†i (82)

=

(
1
2
(1 + p+ (1− p) cos θ) 1

2
e−iφ

√
1− p sin θ

1
2
eiφ
√

1− p sin θ 1
2
(p− 1)(cos θ − 1)

)
(83)

Again, the fidelity for an initial pure state is just |〈ψ|A(|ψ〉〈ψ|)|ψ〉|, which gives

F (|ψ〉〈ψ|,A(|ψ〉〈ψ|)) =

√
1

4

(
3 +

√
1− p− p+ 2p cos θ −

(
−1 +

√
1− p+ p

)
cos 2θ

)
(84)

To minimize, we take the derivative with respect to θ and solve when the derivative
is zero. There are several roots, but checking the second derivative indicates that the
minimum occurs for θm = π with the minimizing initial state |ψm〉 = |1〉. Plugging
back in, we have

F (|ψm〉〈ψm|,A(|ψm〉〈ψ +m|)) = (1− p)1/2 = e−t/(2T1) (85)

In the limit t→∞, the exponential decays to 0, so that f(t) also goes to 0. This should
corroborate the discussion in class, where we noted that this channel pushes the state
to |0〉, or pointing up on the Bloch sphere. Consequently, the fidelity minimizing initial
state is the orthogonal |1〉 state.
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• (c) Let |φ〉 = cos θ
2
|0̄〉 + eiφ sin θ

2
|1̄〉. The action of the amplitude-damping channel is

given by

A⊗A|φ〉〈φ| =
∑
ij

(Ai ⊗ Aj)|φ〉〈φ|(Ai ⊗ Aj)
† =

∑
ij

Bij|φ〉〈φ|B†
ij (86)

where Bij = Ai⊗Aj. There are four such combinations to worry about, which we work
through step by step.

–

B00|φ〉〈φ|B†
00 =


1 0 0 0
0

√
1− p 0 0

0 0
√

1− p 0
0 0 0 1− p




0 0 0 0

0 cos2 θ
2

eiφ

2
sin θ 0

0 eiφ

2
sin θ sin2 θ

2
0

0 0 0 0



×


1 0 0 0
0

√
1− p 0 0

0 0
√

1− p 0
0 0 0 1− p

 (87)

=


0 0 0 0
0 (1− p) cos2 θ

2
1
2
eiφ(1− p) sin θ 0

0 1
2
eiφ(1− p) sin θ (1− p) sin2 θ

2
0

0 0 0 0

 (88)

= (1− p)|φ〉〈φ| (89)
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–

B01|φ〉〈φ|B†
01 =


0

√
p 0 0

0 0 0 0
0 0 0

√
1− p

√
p

0 0 0 0




0 0 0 0

0 cos2 θ
2

eiφ

2
sin θ 0

0 eiφ

2
sin θ sin2 θ

2
0

0 0 0 0



×


0 0 0 0√
p 0 0 0

0 0 0 0
0 0

√
1− p

√
p 0

 (90)

=


p cos2 θ

2
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (91)

B10|φ〉〈φ|B†
10 =


0 0

√
p 0

0 0 0
√

1− p
√
p

0 0 0 0
0 0 0 0




0 0 0 0

0 cos2 θ
2

eiφ

2
sin θ 0

0 eiφ

2
sin θ sin2 θ

2
0

0 0 0 0



×


0 0 0 0
0 0 0 0√
p 0 0 0

0
√

1− p
√
p 0 0

 (92)

=


p sin2 θ

2
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (93)

–

B11|φ〉〈φ|B†
11 =


0 0 0 p
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0

0 cos2 θ
2

eiφ

2
sin θ 0

0 eiφ

2
sin θ sin2 θ

2
0

0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
p 0 0 0


= 0 (94)

Summing over these gives a final result

A⊗A(|φ〉〈φ|) = (1− p)|φ〉〈φ|+ p cos2 θ

2
|00〉〈00|+ p sin2 θ

2
|00〉〈00| (95)

= (1− p)|φ〉〈φ|+ p|00〉〈00| (96)
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We now verify that this is the same as apply the Ei operators to |ψ〉.∑
i

Ei|ψ〉〈ψ|E†
i = (1− p)|ψ〉〈ψ|

+ p|00〉〈01| (α|01〉+ β|10〉) (α∗〈01|+ β∗〈10|) |01〉〈00|
+ p|00〉〈10| (α|01〉+ β|10〉) (α∗〈01|+ β∗〈10|) |10〉〈00| (97)

= (1− p)|ψ〉〈ψ|+ p(|α|2 + |β|2)|00〉〈00| (98)

= (1− p)|ψ〉〈ψ|+ p|00〉〈00| (99)

which is the same as the action of A⊗A.

• (d) Again, since we start with a pure state, the fidelity is

|〈φ|A ⊗ A(|φ〉〈φ|)|φ〉| = |〈φ| [(1− p)|φ〉〈φ|+ p|00〉〈00|] |φ〉| =
√

1− p (100)

This is independent of the encoded qubit, i.e. this is the fidelity independent of the
choice of the angle θ and phase φ. This is the same as the worst-case fidelity calculated
in part (b).

• (e) If we measure ZZ, the probability of obtaining |00〉 (ZZ = +1) is just the coefficient
of |00〉〈00| above, which is p. If this outcome is not obtained, the state is |φ〉, which
has outcome ZZ = −1. Clearly, this has fidelity 1 with respect to |φ〉 independent of
time. We call this an error-detecting code because if we obtain the outcome +1 when
measuring ZZ, we know an error occurred. Similarly an outcome of −1 tells us that
no error occurred. However, we do not have the ability to correct; the process of taking
an unknown, arbitrary initial |φ〉 to |00〉 is irreversible.

6.6 Extra Credit:High Fidelity

• (a) Letting ρ = 1
2
(I + ~r · ~σ)

det ρ = det

∣∣∣∣12
(

1 + rz rx − iry

rx + iry 1− rz

)∣∣∣∣ (101)

=
1

4
((1− rz)(1 + rz)− (rx + iry)(rx − iry)) (102)

=
1

4

(
1− r2

z − r2
x − r2

y

)
(103)

=
1

4
(1− ~r2) (104)

which means |~r| =
√

1− 4 det ρ.

• (b) Consider

A =

(
a b
c d

)
(105)

trA = a+ d (106)

detA = ad− bc (107)
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The eigenvalues of the matrix are given by the characteristic equation

det(A− λI) = (a− λ)(d− λ)− bc = 0 (108)

= λ2 − (a+ d)λ+ (ad− bc) = 0 (109)

= λ2 − trMλ+ detA = 0 (110)

which indicates that

λ± =
1

2

[
trA±

√
(trA)2 − 4 detA

]
(111)

So that λ+ + λ− = trA and λ+λ− = detA.

• (c) We look to diagonalize ρ1/2σρ1/2, with ρ associated with Bloch vector ~r and σ with
~s. We will use the results from part (b) to determine the eigenvalues.

Recalling from problem set 3 that (~r · ~σ)(~s · ~σ) = (~r · ~s)I + i(~r × ~s) · ~σ, we can easily
calculate the trace.

tr ρ1/2σρ1/2 = tr ρσ (112)

=
1

4
tr [(I + ~r · ~σ)(I + ~s · ~σ] (113)

=
1

4
tr [I + ~r · ~σ + ~s · ~σ + (~r · ~s)I + i(~r × ~s) · ~σ]

=
1

2
[1 + (~r · ~s)] (114)

where we have also use the fact the the Pauli matrices are traceless. Turning to the
determinant, we have that det(AB) = det(A) det(B), which allows us to rearrange
det(ρ1/2σρ1/2) = det(ρ1/2) det(σ) det(ρ1/2) = det(ρ) det(σ). Then

det ρ = det

∣∣∣∣12
(

1 + rz rx − iry

rx + iry 1− rz

)∣∣∣∣ (115)

=
1

4

(
1− r2

z − r2
x − r2

y

)
(116)

=
1

4
(1− ~r2) (117)

so that detσ = 1
4
(1− ~s2). Thus,

det(ρ1/2σρ1/2) =
1

16
(1− ~r2)(1− ~s)2 (118)

Let λ± represent the eigenvalues of ρ1/2σρ1/2, then

F 2(ρ, σ) =
(
tr
√
ρ1/2σρ1/2

)2

(119)

=
(√

λ+ +
√
λ−

)2

(120)

= λ+ + λ− + 2
√
λ+λ− (121)

= tr(ρ1/2σρ1/2) + 2
√

det(ρ1/2σρ1/2) (122)

=
1

2

[
1 + (~r · ~s) + (1− ~r2)(1− ~s2)

]
(123)
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where in going to (120), we have taken the trace in the diagonal basis.

• (d) As stated in the hint, we want to show that ABBA and BAAB have the same
eigenvalues. Suppose that ABBA has eigenvalue λi associated with eigenvector |i〉.
Then,

λi(BA|i〉) = BA(λi|i〉) (124)

= BA(ABBA|i〉) (125)

= (BAAB)(BA|i〉) (126)

We see that BAAB then has the same eigenvalue λi, but with eigenvector BA|i〉. Thus

‖AB‖tr = ‖BA‖tr

tr
√
BAAB = tr

√
ABBA (127)

since the trace can be taken in the diagonal basis, in which case it is just the sum of
the eigenvalues.

6.7 Extra credit: Miscellaneous channel problems

• (a) First, note that

XaZb =
2n−1∑
i,j=0

(−1)j·b|i⊕ a〉〈i|j〉|j〉 =
2n−1∑
i=0

(−1)i·b|i⊕ a〉〈i| (128)

so that an arbitrary matrix element |l〉〈m| is transformed as

2n−1∑
a,b=0

XaZb|l〉〈m|(XaZb)
† =

2n−1∑
a,b,i,j=0

(−1)i·b|i⊕ a〉〈i|l〉〈m|j〉〈j ⊕ a|(−1)j·b (129)

=
2n−1∑
a,b=0

(−1)(l⊕m)·b|l ⊕ a〉〈m⊕ a| (130)

=
2n−1∑

a

δl,m|l ⊕ a〉〈m⊕ a| (131)

(132)

Now, given that ρ =
∑

lm αlm|l〉〈m|, we see that

2n−1∑
a,b=0

1

22n
XaZbρ(XaZb)

† =
2n−1∑

a,l,m=0

1

22n
αl,mδl,m|l ⊕ a〉〈m⊕ a| (133)

=
2n−1∑
a,l=0

1

22n
αl,l|l ⊕ a〉〈l ⊕ a| (134)

=
∑

a

1

2n
|a〉〈a| = 1

2n
I (135)
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where in going to the last line, we note that sum over l just cycles through the diagonal
elements out of order and since

∑
l αll = 1, we get an overall factor of 2n from this

sum.

• (b) Again, a general pure state is written is |ψ〉 = cos θ
2
|0〉 + eiφ sin θ

2
. Using Mathe-

matica, we can calculate the action of the Krause operators to find

ρout =
∑

i

Ai|ψ〉〈ψ|A†i =

(
9

154
(13 + 3 cos θ) − 9

22
e−iφ sin θ

− 9
22
e−iφ sin θ 1

154
(37− 27 cos θ)

)
(136)

If the output state is pure, then ρ2
out = ρout. Again, in Mathematica, we find

ρ2
out =

(
81((13+3 cos θ)2+49e−2iφ sin2 θ)

23716
− 9

22
e−iφ sin θ

− 9
22
e−iφ sin θ (37−27 cos θ)2+3969e−2iφ sin2 θ

23716

)
(137)

Given that the off-diagonals are unchanged, we can set φ = 0. Solving either diagonal
pair, indicates that θ± = ± cos−1

(
1
3

)
. Plugging into our general equation for ψ, we see

that the input pure/output pure state pairs are

ψθ± =
1√
3

(
|0〉 ±

√
2|1〉

)
7→ 1√

11

(
3|0〉+

√
2|1〉

)
(138)

So two different input pure states are taken to the same output pure state.

• (c) We can generally write two distinct non-orthogonal pure states as |ψ1〉 and |ψ2〉 =
|ψ1〉 + |ψ⊥1 〉. Under the map E , each state is preserved, i.e. E(|ψ1〉) = |ψ1〉 and
E(|ψ2〉) = |ψ2〉. But using our definitions

E(|ψ2〉) = E(|ψ1〉) + E(|ψ⊥1 〉) (139)

|ψ2〉 = |ψ1〉+ E(|ψ⊥1 〉) (140)

which requires E|ψ⊥1 〉 = |ψ⊥1 〉. Restricting attention to the two-dimensional subspace
spanned by |ψ1〉 and |ψ⊥1 〉, we immediately see that the only quantum operation which
results in the above relations is the identity map on this subspace.

• (d) The phase-damping channel Krause operators are

B0 =

√
1− p

2
I B1 =

√
p

2
Z =

√
p

2
(|0〉〈0| − |1〉〈1|) (141)

and the amplitude-damping channel Krause operators are

A0 = |0〉〈0|+
√

1− p′|1〉〈1| A1 =
√
p′|0〉〈1| (142)

Transforming under the phase-damping channel, followed by the amplitude channel

A(B(ρ)) =
∑
i,j

AiBjρB
†
jA

†
i (143)

requires calculating each AiBj:
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1.

A0B0 =
(
|0〉〈0|+

√
1− p′|1〉〈1|

)√
1− p

2
I (144)

=

√
1− p

2

(
|0〉〈0|+

√
1− p′|1〉〈1|

)
(145)

2.

A0B1 =
(
|0〉〈0|+

√
1− p′|1〉〈1|

)√p

2
(|0〉〈0| − |1〉〈1|) (146)

=

√
p

2

(
|0〉〈0| −

√
1− p′|1〉〈1|

)
(147)

3.

A1B0 =
√
p′|0〉〈1|

√
1− p

2
I (148)

=
√
p′
√

1− p

2
|0〉〈1| (149)

4.

A1B1 =
√
p′|0〉〈1|

√
p

2
(|0〉〈0| − |1〉〈1|) (150)

= −
√
p′
√
p

2
|0〉〈1| (151)

We see that A1B0 and A1B1 are proportional to |0〉〈1| and that

(A1B0)
†(A1B0) + (A1B1)

†(A1B1) = p′(1− p

2
)|1〉〈1|+ p′

p

2
|1〉〈1| = p′|1〉〈1| (152)

An equivalent 3 component Krause map is then {A0B0, A0B1,
√
p′|0〉〈1|}.
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