
Phys 366 Mathematical Methods of Physics Fall 2016

Homework Assignment #11 Due Thursday, December 8
(20 points) (at lecture)

11.2 (10 points) Challenge problem. Group-velocity approximation. Suppose we
have a wave packet traveling to the right,

f(x, t) =

∫ ∞

−∞

dk′

2π
f̃R(k

′)ei[k
′x−ω(k′)t] .

The difference from our previous consideration of waves in one spatial dimension is that
we now allow the angular frequency to be a nonlinear function, ω(k′), of the wave number
k′ (the reason for a putting a prime on the wave number will become clear below); another
way of putting this is that the phase velocity, ω/k′, is not constant. This leads to a
phenomenon called dispersion, in which a wave packet spreads over time. We explore such
dispersion or spreading in this problem.

The functional form of the angular frequency as a function of wave number, i.e., the
function ω(k′), is called a dispersion relation. A dispersive wave packet is not a solution
of the wave equation, but it is a solution of a related equation that we will not explore
here. Dispersive wave propagation occurs in many physical situations, not least in the
propagation of the wave function of a free particle in nonrelativistic quantum mechanics,
where h̄ω = E = p2/2m = h̄2k′2/2m, i.e., ω = h̄k′2/2m and ω/k′ = h̄k′/2m = p/2m.
Another prominent example is the propagation of electromagnetic waves in materials with
an index of refraction that depends on frequency.

There is one niggling point that has to be confronted every time you deal with Fourier
transforms: if f(x, t) is real, then f̃R(−k′) = f̃∗

R(k
′). Since we don’t want to be worrying

about what is happening at negative wave numbers, we will set f̃R(k
′) equal to zero

for negative k′. This means we have a complex wave packet, which works for quantum
mechanics; should you be in a situation where you need a real wave packet, you just take
the real part.

Consider now a situation where f̃R(k
′) has substantial support only over a narrow

interval of wave numbers centered at large wave number k0. We assume that the width
∆k ≪ k0 of the narrow interval is so small that the phase velocity, ω/k′, doesn’t vary much
across the interval. This allows us to expand ω(k′) in a Taylor series about the center of
the interval:

ω(k′) = ω0 + vg(k
′ − k0) +

1

2
α(k′ − k0)

2 + (higher-order terms) ,

where
ω0 = ω(k0) ,

vg =
dω

dk′

∣∣∣∣
k′=k0

,

α =
d2ω

dk′2

∣∣∣∣
k′=k0

.



We shall see that the linear term describes a wave packet that moves to the right with the
group velocity vg. The quadratic and higher-order terms describe spreading, or dispersion,
of the wave packet.

Before going further, it is useful to separate the wave packet into the “carrier wave,”
which is the rapid oscillation at the central wave number k0, and an envelope that defines
the wave packet and within which the carrier wave does its rapid oscillations. To do this,
we introduce a new integration variable, k = k′ − k0, which has its zero at the center of
the wave packet:

f(x, t) =

∫ ∞

−∞

dk

2π
f̃R(k0 + k)ei[(k0+k)x−ω(k0+k)t] = eik0x

∫ ∞

−∞

dk

2π
F̃ (k)ei[kx−ω(k0+k)t

]
, (1)

The function F̃ (k) = f̃R(k0 + k), which is peaked at k = 0, is the Fourier transform of the
envelope function F (x), i.e.,

F (x) =

∫ ∞

−∞

dk

2π
F̃ (k)eikx , F̃ (k) =

∫ ∞

−∞
dxF (x)e−ikx .

To summarize, we have a wave given by Eq. (1), which is a rapid oscillation at the high
wave number k0 within an envelope F (x). The Fourier transform F̃ (k) of the envelope has
support only within a narrow interval ∆k around k = 0. The dispersion relation has been
expanded to quadratic order, giving

ω(k0 + k) = ω0 + vgk +
1

2
αk2 + (higher-order terms) . (2)

Now let’s get going.

(a) Show that if one retains only the constant and linear terms in the dispersion
relation (2), the wave packet consists of “carrier wave” with wave number k0, which moves
to the right with the phase velocity vp = ω0/k0, and an envelope that moves to the right
with the group velocity vg. This is called the group-velocity approximation.

No matter how nonlinear the dispersion relation is, we can always consider a wave
packet that is narrow enough in k that we can justify keeping only the constant and linear
term in the Taylor expansion (1). This means, however, in accordance with our discussion
of isolated wave packets, that the wave packet has an extent a >∼ 2π/∆k in position. If we
are forced to make ∆k very small to justify keeping only the linear term, the wave packet
will become very extended in position. Certainly not all wave packets are of this sort,
and thus not all wave packets can be treated in the group-velocity approximation. To see
what happens outside the group-velocity approximation, let’s go one further order in the
expansion (1) and also keep the quadratic term.

(b) Assume now that the envelope is a normalized Gaussian,

F (x) =
1√
2πσ2

e−x2/2σ2

,

centered at the origin. This Gaussian spreads over a spatial extent of a few times σ. Find
the wave packet f(x, t) if one retains all three terms in the dispersion relation (2). Explain
what your result means for the spreading (or dispersion) of the wave packet.


