
Phys 366 Mathematical Methods of Physics Fall 2016

Homework Assignment #9 Due Thursday, November 17
(50 points) (at lecture)

9.5 (10 points) Challenge problem. Consider a string that has uniform linear mass
density λ. the string is stretched between two walls till it is under tension T . The string is
shown below: on the left, the string is in its equilibrium configuration, where it is a straight
line between the walls; on the right, the string is plucked so that its vertical displacement
from equilibrium is z = f(x, t). The inset shows the displacement and forces on a small
segment of the string of length ∆x. We are going to study the behavior of the string when
its vertical displacement is small, i.e., |∂f/∂x| ≪ 1.

For a string under even moderate tension, the magnitude of the tension, T , stays
constant as the string undergoes small oscillations; in addition, gravity can be neglected
since it is small compared to the tension forces.

(a) Show that the force on the small segment is
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Using Newton’s second law, show that the time-dependent displacement f(x, t) obeys the
equation
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√
T/λ.

Equation (1) is called the one-dimensional wave equation. It, its three-dimensional
counterpart,

∇2f − 1

v2
∂2f

∂t2
,



and various generalizations of these govern wave phenomena and thus are among the most
important equations in physics. The remainder of the problem explores ways to solve the
one-dimensional wave equation.

(b) Transform the wave equation to coördinates ξ = x − vt and η = x + vt; these
coördinates are called characteristic coördinates. Solve the resulting equation and thereby
show that the general solution of the one-dimensional wave equation is a superposition of
a wave of arbitrary shape moving to the right and another wave of arbitrary shape moving
to the left.

Now we are going to solve the equation using Fourier transforms. For that purpose,
we will consider the walls to be so far away that we can forget about them—or that we are
dealing with a phenomenon that doesn’t require walls—and thus that the wave equation
applies for all x.

(c) In this part, we Fourier transform with respect to x, but not t:
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Find the equation satisfied by f̃(k, t), solve for the general solution, and show that when
transformed back to f(x, t), it agrees with your result for part (b).

(d) In this part, we Fourier transform with respect to both x and t:
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dt f(x, t)e−i(kx−ωt) .

Find the equation satisfied by f̃(k, ω), solve for the general solution, and show that when
transformed back to f(x, t), it agrees with your result for parts (b) and (c).


