11.1

(a) Since 8/dx becomes ik in the Fourier transform, f(k,t) satisfies the ordinary differential equation

df(k,t)

= a2k f(k,t) .

The general solution of this equation with initial value f(k,0) at t = 0 is
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(b) Translating back to the spatial domain means to do the following:
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If we want to get an answer in terms of the initial value f(x,0), we should plug in the Fourier transform of
f(k,0) (what we are doing is deriving the convolution property; you could use it directly, but it is a nuisance to
remember it):
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The Green function G(x — 2/, t) is a normalized Gaussian; it describes the diffusion away from an initial d-spike
at position z’.

We often write the Green function as G(x,t;2’,0) to emphasize that it depends on two sets of variables:
two initial-condition or source variables, a position 2’ and a time, here t' = 0, and two final or field variables, a
position z and a time ¢t. Here our notation emphasizes that this Green function depends only on the differences
x—2 andt —t' =t

Here we use the Gaussian integral



