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(a) The drawing shows that the z (vertical) component of the force on the left end of the segment of length Ax
is T, = —T(0f/9z)|, and the 2z component of the force on the right end of the segment is T, = T(f/0x) |4+ Az

Thus the total force on the segment is
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where the second form follows from the definition of the second derivative, assuming Az is infinitesimal.
The mass of the segment is AAx, and its acceleration is 92 f /9t2, so Newton’s law says that
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The result is the one-dimensional wave equation,
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(b) We have to transform the derivatives to the new coérdinates £ = x — vt and n = x + vt. The efficient
way to do that is to regard the partial derivatives as operators and to derive how to go from one set of operators

to the other:
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Now, taking this to second derivatives, we have
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Thus the wave equation transforms to
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We can solve Eq. (2) one derivative at a time: 9f/9n has zero derivative with respect to &, 9f/0n is equal
to an arbitrary function of 7, which is a constant as far as £ is concerned; we write this arbitrary function as

f1.(n), so we have
of

8777 = fi(n) ;

integrating this, we get
f(&m) = fun) + fr(§)

where fr(€) is an arbitrary function of £, which is a constant as far as 1 is concerned. So the general solution is
a sum of an arbitrary function of £ and an arbitrary function of n. Translated to z and ¢, this means that the
general solution is a sum of an wave of arbitrary shape propagating to the right and a wave of arbitrary shape
propagating to the left:

f(@,t) = fr(x —ot) + fr(z +vt),

(c) Recalling that a spatial derivative is equivalent to multiplying the Fourier transform by ik, we get that
the equation satisfied by f(k,t) is the
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This is an ordinary differential equation because the wave number k is just a constant parameter as far as the
equation is concerned. The general solution should be familiar:

Fk,t) = fr(k)e ™" + fp (k)™ .

Here fR(k) and fL(k:) are arbitrary functions of the wave number k. We get the solution of the wave equation
by doing the inverse Fourier transform to find

f(l',t) = /Oo % ~(k7t)eikac — /00 %fR(k)eik(x_vt) +/°° %fL(k/,)eik(x+vt) )
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= fr(z — vt) = fr(k+vt)

We see that the general solution is a superposition of a wave traveling to the right and a wave traveling to the
left:

f(z,t) = fr(z —vt) + fr(x +vt) .

Moreover, we see that the waves traveling to the right and to the left are completely arbitrary and that they are
built up from arbitrary superpositions of monochromatic waves.

(d) A spatial derivative is equivalent to multiplying the Fourier transform by ik, and a temporal derivative
is equivalent to multiplying the Fourier transform by —iw, so the Fourier transform satisfies the equation

(—k;2 + “;j) flk,w) .

Evidently, we must have f (k,w) = 0 unless w = +wvk. Fortunately, we can use the d-function to write the general
solution as

fk,w) = 27 fr(k)d(w — vk) + 27 f1(k)6(w + vk) .

2



[The factors of 27 are chosen with forethought so that our ultimate solution looks just like the results of parts (b)
and (c), but sufficient experience with the d-functions of wave numbers and frequencies would encourage this
choice without any forethought.] Plugging this into the Fourier transform, we have
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= fr(z —vt) + fr(z +ovt) .



