
9.5

(a) The drawing shows that the z (vertical) component of the force on the left end of the segment of length ∆x
is Tz = −T (∂f/∂x)|x and the z component of the force on the right end of the segment is Tz = T (∂f/∂x)|x+∆x.
Thus the total force on the segment is
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,

where the second form follows from the definition of the second derivative, assuming ∆x is infinitesimal.
The mass of the segment is λ∆x, and its acceleration is ∂2f/∂t2, so Newton’s law says that

T∆x
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= F = λ∆x

∂2f

∂t2
.

The result is the one-dimensional wave equation,
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v2
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∂t2
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λ
. (1)

(b) We have to transform the derivatives to the new coördinates ξ = x − vt and η = x + vt. The efficient
way to do that is to regard the partial derivatives as operators and to derive how to go from one set of operators
to the other:

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η
,

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+

∂η

∂t

∂

∂η
= −v

∂

∂ξ
+ v

∂

∂η
.

Now, taking this to second derivatives, we have
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Thus the wave equation transforms to

0 =
∂2f

∂x2
− 1

v2
∂2f

∂t2
= 4

∂2f

∂η ∂ξ
. (2)

We can solve Eq. (2) one derivative at a time: ∂f/∂η has zero derivative with respect to ξ, ∂f/∂η is equal
to an arbitrary function of η, which is a constant as far as ξ is concerned; we write this arbitrary function as
f ′
L(η), so we have

∂f

∂η
= f ′

L(η) ;

integrating this, we get

f(ξ, η) = fL(η) + fR(ξ) ,

where fR(ξ) is an arbitrary function of ξ, which is a constant as far as η is concerned. So the general solution is
a sum of an arbitrary function of ξ and an arbitrary function of η. Translated to x and t, this means that the
general solution is a sum of an wave of arbitrary shape propagating to the right and a wave of arbitrary shape
propagating to the left:

f(x, t) = fR(x− vt) + fL(x+ vt) ,

(c) Recalling that a spatial derivative is equivalent to multiplying the Fourier transform by ik, we get that
the equation satisfied by f̃(k, t) is the

d2f̃(k, t)

dt2
+ (vk)2f̃(k, t) = 0 .

This is an ordinary differential equation because the wave number k is just a constant parameter as far as the
equation is concerned. The general solution should be familiar:

f̃(k, t) = f̃R(k)e
−ikvt + f̃L(k)e

ikvt .

Here f̃R(k) and f̃L(k) are arbitrary functions of the wave number k. We get the solution of the wave equation
by doing the inverse Fourier transform to find

f(x, t) =
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−∞
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∫ ∞
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dk

2π
f̃L(k)e

ik(x+vt)︸ ︷︷ ︸
= fL(k + vt)

.

We see that the general solution is a superposition of a wave traveling to the right and a wave traveling to the
left:

f(x, t) = fR(x− vt) + fL(x+ vt) .

Moreover, we see that the waves traveling to the right and to the left are completely arbitrary and that they are
built up from arbitrary superpositions of monochromatic waves.

(d) A spatial derivative is equivalent to multiplying the Fourier transform by ik, and a temporal derivative
is equivalent to multiplying the Fourier transform by −iω, so the Fourier transform satisfies the equation(

−k2 +
ω2

v2

)
f̃(k, ω) .

Evidently, we must have f̃(k, ω) = 0 unless ω = ±vk. Fortunately, we can use the δ-function to write the general
solution as

f̃(k, ω) = 2πf̃R(k)δ(ω − vk) + 2πf̃L(k)δ(ω + vk) .
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[The factors of 2π are chosen with forethought so that our ultimate solution looks just like the results of parts (b)
and (c), but sufficient experience with the δ-functions of wave numbers and frequencies would encourage this
choice without any forethought.] Plugging this into the Fourier transform, we have

f(x, t) =

∫ ∞
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∫ ∞
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∫ ∞
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= e−ikvt

+
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= eikvt

=
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f̃R(k)e
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∫ ∞
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= fR(x− vt) + fL(x+ vt) .
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