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1. INTRODUCTION

We are going to look at general solutions of the one-dimensional Schrödinger equation and the one-dimen-
sional diffusion equation in terms of complete sets of eigenfunctions. The techniques illustrate how to solve
such equations generally (i) by separation of variables, (ii) in terms of eigenfunctions, (iii) in terms of initial
conditions, and (iv) in terms of a Green function.

2. ONE-DIMENSIONAL SCHRÖDINGER EQUATION WITH HARD BOUNDARIES

The Schrödinger equation for the wave function of a particle moving in one spatial dimension is

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = ih̄

∂ψ(x, t)

∂t
. (2.1)

Let’s consider the situation where the particle is moving freely within a “box” from which it cannot escape; this
corresponds to a potential energy

V (x) =

{
0 , for 0 < x < L,
∞ , for x < 0 or x > L.

(2.2)

The result is the free-particle Schrödinger equation for 0 < x < L,

− h̄2

2m

∂2ψ(x, t)

∂x2
= ih̄

∂ψ(x, t)

∂t
, (2.3)

with the boundary conditions that the wave function vanishes at x = 0 and x = L,

0 = ψ(0, t) = ψ(L, t) . (2.4)

We can solve the Schrödinger equation (2.3) by Fourier transforming:

ψ(x, t) =

∫ ∞

−∞

dω

2π
ψ̃(x, ω)e−iωt , ψ̃(x, ω) =

∫ L

0

dt ψ(x, t)eiωt . (2.5)

The Fourier transform ψ̃(x, ω) satisfies the ordinary differential equation (remember the rule ∂/∂t→ −iω),

− h̄2

2m

d2ψ̃(x, ω)

dx2
= h̄ωψ̃(x, ω) ⇐⇒ d2ψ̃(x, ω)

dx2
+ k2ψ̃(x, ω) = 0 , k2 =

2mω

h̄
. (2.6)

The solutions that meet the boundary conditions are

ψ̃(x, ωn) = an sin(knx) , ωn =
h̄k2n
2m

, kn =
nπ

L
, n = 1, 2, . . . . (2.7)
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The general solution for ψ̃(x, ω) is the sum of all the possible solutions:

ψ̃(x, ω) =
∞∑

n=1

ψ̃(x, ωn)2πδ(ω − ωn) =
∞∑

n=1

2πan sin(knx)δ(ω − ωn) . (2.8)

The corresponding general solution for ψ(x, t) is

ψ(x, t) =

∞∑
n=1

an sin(knx)e
−iωnt . (2.9)

The spatial solutions sin(knx) are called the stationary states or energy eigenstates. Stationary states oscillate
with a characteristic angular frequency ωn = En/h̄, where En is the energy eigenvalue. The general solution for
the wave function is a sum of products of the stationary-state wave functions, which depend on position, and
the harmonic temporal oscillations at the eigenfrequencies.

The harmonic functions sin(knx) satisfy an orthogonality relation:∫ L

0

dx sin(knx) sin(kmx) =
1

2

∫ L

0

dx cos[(kn − km)x]− 1

2

∫ L

0

dx cos[(kn + km)x]

=
1

2

sin[(n−m)πx/L]

(n−m)π/L

∣∣∣∣x=L

x=0︸ ︷︷ ︸
= Lδnm

−1

2

sin[(n+m)πx/L]

(n+m)π/L

∣∣∣∣x=L

x=0︸ ︷︷ ︸
= 0

=
L

2
δnm .

(2.10)

This allows us to invert the general solution (2.9) to find the expansion coefficients an:

ane
−iωnt =

2

L

∫ L

0

dx sin(knx)ψ(x, t) . (2.11)

We can find the expansion coefficients in terms of the initial (t = 0) wave function,

an =
2

L

∫ L

0

dx sin(knx)ψ(x, 0) , (2.12)

and if we plug this expression back into the general solution (2.9), we get

ψ(x, t) =

∫ L

0

dx′ ψ(x′, 0)
2

L

∞∑
n=1

e−iωnt sin(knx) sin(knx
′)︸ ︷︷ ︸

= G(x, t;x′, 0)

. (2.13)

Here G(x, t;x′, 0) is the Green function or propagator ; it allows us to express the wave function at time t in terms
of the initial wave function. When t = 0, the Green function becomes the δ-function (at least it is so for x and
x′ in the interval [0, L]):

G(x, 0;x′, 0) =
2

L

∞∑
n=1

sin(knx) sin(knx
′) = δ(x− x′) . (2.14)

Now we’re going to use what we’ve done up till now to call attention to a number of general points. We
used the temporal Fourier transform to solve this problem because the quantum mechanics of isolated systems,
like this single particle in a box, informs us that the general solution is a sum of products of spatial stationary
states and temporal oscillations. If we didn’t know anything about Fourier series or Fourier transforms, we would
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approach solving the Schrödinger equation (2.3) by using the technique of separation of variables, i.e., by looking
for product solutions

ψ(x, t) = X(x)T (t) . (2.15)

Plugging this assumption into the Schrödinger equation and dividing by XT , we get

− 1

X

d2X

dx2
= i

2m

h̄

1

T

dT

dt
= k2 . (2.16)

The left side of this equation is a function of x, and the right side is a function of t, so the only way the equation
can be satisfied is if both sides are equal to the same constant, k2, as indicated. The result is a pair of ordinary
differential equations for X(x) and T (t),

d2X

dx2
= −k2X ,

dT

dt
= −iωT , ω =

h̄k2

2m
.

(2.17)

The solution for T (t) is a complex exponential T (t) = T (0)e−iωt. In quantum-mechanical problems, we know
from experience that there are product solutions with complex-exponential time dependence, so we typically start
off by assuming that. The Fourier-transform method we used above is really the assumption that the general
solution is a superposition of product solutions, each of which has a complex-exponential time dependence.

What we are left with is to find the solutions of the spatial equation. The solutions are called stationary
states because the corresponding time dependence is the complex exponential, whose absolute square is always
one, meaning that quantum probabilities don’t change when the system is in a stationary state. They are also
called energy eigenstates because the spatial equation can be regarded as an eigenvalue problem for a Hermitian
operator, with the eigenvalues determining the allowed values of the energy.

In the case we are doing here, the equation for the stationary states is

d2X

dx2
= −k2X . (2.18)

This is an eigenvalue problem for a Hermitian operator because the second-derivative operator, H = d2/dx2, is
a Hermitian operator relative to the standard inner product for functions defined on the domain [0, L] with the
boundary condition that the functions vanish at x = 0 and x = L. The inner product is

(f, g) = ⟨f |g⟩ =
∫ L

0

dx f∗(x)g(x) . (2.19)

Recall that the way to go from a ket to the corresponding function is f(x) = ⟨x|f⟩; the function is called the
position representation of the function.

To say that H is Hermitian means that ⟨f |H|g⟩ = (f,Hg) = (Hf, g) = ⟨g|H|f⟩∗ for all functions f and g
that satisfy the boundary conditions. We can easily show this by integrating twice by parts:

(f,Hg) =

∫ L

0

dx f∗(x)
d2g(x)

dx2

= f∗(x)
dg(x)

dx

∣∣∣∣x=L

x=0

−
∫ L

0

dx
df∗(x)

dx

dg(x)

dx

=

(
f∗(x)

dg(x)

dx
− df∗(x)

dx
g(x)

)∣∣∣∣x=L

x=0

+

∫ L

0

dx
d2f∗(x)

dx2
g(x)

=

(
f∗(x)

dg(x)

dx
− df∗(x)

dx
g(x)

)∣∣∣∣x=L

x=0

+ (Hf, g) .

(2.20)

For the boundary condition that the functions vanish at the endpoints, the boundary terms vanish, and we have
the H = d2/dx2 is a Hermitian operator. It is easy to see that we could also use the boundary condition that the
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first derivative vanishes at the endpoints, and we will use that boundary condition when we study the diffusion
equation below.

That H is Hermitian means that it has a complete set of orthonormal eigenstates, which we found above:

d2Xn(x)

dx2
= −k2nXn(x) , Xn(0) = Xn(L) = 0

H|Xn⟩ = −k2n|Xn⟩ , ⟨x = 0|Xn⟩ = ⟨x = L|Xn⟩ = 0

=⇒ Xn(x) = ⟨x|Xn⟩ =
√

2

L
sin(knx) , kn =

nπ

L
, n = 1, 2, . . . .

(2.21)

The eigenvalues k2n give the allowed energies:

En = h̄ωn =
h̄2k2n
2m

=
1

2m

(
nπh̄

L

)2

, n = 1, 2, . . . . (2.22)

We have chosen the stationary states to be normalized, and they are orthogonal:

⟨Xn|Xm⟩ =
∫ L

0

dxX∗
n(x)Xm(x) =

2

L

∫ L

0

dx sin(knx) sin(kmx) = δnm . (2.23)

Any wave function can be expanded in terms of these orthonormal eigenstates:

ψ(x) =
∞∑

n=1

cnXn(x) =

√
2

L

∞∑
n=1

cn sin(knx) ⇐⇒ |ψ⟩ =
∞∑

n=1

cn|Xn⟩ ,

cn =

∫ L

0

dxX∗
n(x)ψ(x) =

√
2

L

∫ L

0

dx sin(knx)ψ(x) ⇐⇒ cn = ⟨Xn|ψ⟩ .

(2.24)

The expansions in Eq. (2.24) are a species of Fourier series, but different from the Fourier series that we
considered previously. In our previous considerations, the Fourier series were defined for functions on a domain
of length L, just as here, but they used periodic boundary conditions. Periodic boundary conditions mean that
the functions are periodic on the interval of length L; in the terms of our discussion of Hermiticity in Eq. (2.20),
this implies that a function and its first derivative have the same value at the two endpoints. For the Fourier
series that arise naturally here, where we require that the functions vanish at the endpoints, the Fourier functions
are all sine functions—this is thus called a Fourier sine series—but we have, in some sense, twice as many wave
numbers as for periodic boundary conditions, and this makes up for the absence of cosine functions in the Fourier
series. It pays not to get too addicted to a particular kind of Fourier series, because different problems lead to
different kinds of Fourier series.

The time evolution of the wave function can now be written as

ψ(x, t) =
∞∑

n=1

cnXn(x)e
−iωnt =

√
2

L

∞∑
n=1

cn sin(knx)e
−iωnt ⇐⇒ |ψ(t)⟩ =

∞∑
n=1

cn|Xn⟩e−iωnt . (2.25)

If we plug the Fourier coefficients of Eq. (2.24), evaluated using the initial wave function, back into these
expansions, we recover Eq. (2.13):

ψ(x, t) =

∫ L

0

dx′ ψ(x′, 0)
2

L

∞∑
n=1

e−iωnt sin(knx) sin(knx
′)︸ ︷︷ ︸

= G(x, t;x′, 0)

⇐⇒ |ψ(t)⟩ =
∞∑

n=1

e−iωnt|Xn⟩⟨Xn|︸ ︷︷ ︸
= U(t, 0))

ψ(0)⟩ .

(2.26)
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Table 1. One-dimensional Schrödinger equation for a free particle in a box

1. Wave function: ψ(x, t) = ⟨x|ψ(t)⟩ , 0 < x < L

2. Schrödinger equation: ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
⇐⇒ ih̄

d|ψ(t)⟩
dt

= − h̄2

2m
H|ψ(t)⟩

3. Boundary conditions: ψ(0, t) = ψ(L, t) = 0

4. General solution: ψ(x, t) =
∞∑

n=1

cnXn(x)e
−iωnt ⇐⇒ |ψ(t)⟩ =

∞∑
n=1

cne
−iωnt|Xn⟩

5. Stationary states:
d 2Xn(x)

dx2
= −k2nXn(x) ⇐⇒ H|Xn⟩ = −k2n|Xn⟩

Xn(0) = Xn(L) = 0

kn =
nπ

L
, En = h̄ωn =

h̄2k2n
2m

Xn(x) =

√
2

L
sin(knx)

6. Orthonormality : δnm =

∫ L

0

dxX∗
n(x)Xm(x) ⇐⇒ δnm = ⟨Xn|Xm⟩

7. Completeness: δ(x− x′)︸ ︷︷ ︸
= ⟨x|x′⟩

=
∞∑

n=1

Xn(x)X
∗
n(x

′) ⇐⇒ I =
∞∑

n=1

|Xn⟩⟨Xn|

8. Fourier coefficients: cn =

∫ L

0

dxX∗
n(x)ψ(x, 0) ⇐⇒ cn = ⟨Xn|ψ(0)⟩

9. Green function: G(x, t;x′, 0)︸ ︷︷ ︸
= ⟨x|U(t, 0)|x′⟩

=
∞∑

n=1

e−iωntXn(x)X
∗
n(x

′) ⇐⇒ U(t, 0) =
∞∑

n=1

e−iωnt|Xn⟩⟨Xn|

ih̄
∂G(x, t;x′, t′)

∂t
= − h̄2

2m

∂2G(x, t;x′, t′)

∂x2
⇐⇒ ih̄

dU(t, 0)

dt
= − h̄2

2m
HU(t, 0)

G(x, 0;x′, 0) = δ(x− x′) ⇐⇒ U(0, 0) = I

ψ(x, t) =

∫ L

0

dx′G(x, t;x′, 0)ψ(x′, 0) ⇐⇒ |ψ(t)⟩ = U(t, 0)|ψ(0)⟩

Here U(t, 0) is the unitary evolution operator; its position representation, G(x, t;x′, t′) = ⟨x|U(t, 0)|x′⟩, is the
temporal Green function or propagator. These two satisfy the differential equations

ih̄
∂G(x, t;x′, t′)

∂t
= − h̄2

2m

∂2G(x, t;x′, t′)

∂x2
, G(x, 0;x′, 0) = δ(x− x′) ,

⇐⇒ ih̄
dU(t, 0)

dt
= − h̄2

2m
HU(t, 0) , U(0, 0) = I .

(2.27)

The initial condition for the Green function is the completeness property of the stationary states:

⟨x|x′⟩ = δ(x− x′) = G(x, t;x′, 0) =
∞∑

n=1

Xn(x)X
∗
n(x

′) ⇐⇒ I = U(0, 0) =
∞∑

n=1

|Xn⟩⟨Xn| . (2.28)
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Table 1 summarizes the solution of the one-dimensional Schrödinger equation for a free particle in a box.

3. ONE-DIMENSIONAL DIFFUSION EQUATION WITH HARD BOUNDARIES

We now shift gears to consider the diffusion equation,

∂2f

∂x2
=

1

α2

∂f

∂t
, (3.1)

which resembles the Schrödinger equation, except that factor in front of the temporal derivative is real. We are
going to consider the diffusion equation on the interval 0 < x < L. Recall that the diffusion equation describes
the flow of some quantity, e.g., concentration of some chemical or internal energy, under the influence of a gradient
in that quantity. Let’s assume that the quantity can’t flow into the boundaries—the chemical is stuck in a flask,
or the boundaries are thermal insulators—so the appropriate boundary conditions are that ∂f/∂x vanishes at
the endpoints:

0 =
∂f(x, t)

∂x

∣∣∣∣
x=0

=
∂f(x, t)

∂x

∣∣∣∣
x=L

. (3.2)

We expect the solutions of the diffusion equation to describe decay of derivatives to a final state where f is a
constant. In particular, we do not expect the solutions to oscillate in time; this means that the Fourier transform
is not an ideal tool for handling the diffusion equation (we could use the Fourier transform’s first cousin, the
Laplace transform, but won’t do that here). Instead, we use the technique of separation of variables to inform
us of the appropriate spatial and temporal dependences. Thus we begin by looking for solutions of the form

f(x, t) = X(x)T (t) . (3.3)

Plugging this assumption into the diffusion equation and dividing by XT , we get

1

X

d2X

dx2
=

1

α2

1

T

dT

dt
= −k2 . (3.4)

The left side of this equation is a function of x, and the right side is a function of t, so the only way the equation
can be satisfied is if both sides are equal to the same constant, −k2, chosen here to be negative so that we get
oscillatory solutions in x and exponentially decaying solutions in t. The result is a pair of ordinary differential
equations for X(x) and T (t),

d2X

dx2
= −k2X ,

dT

dt
= −λT , λ = α2k2 .

(3.5)

The solution for T (t) is a decaying exponential T (t) = T (0)e−λt.
What we are left with is to find the solutions of the spatial equation, which is identical to that for the

Schrödinger equation, but with different boundary conditions, which change the allowed solutions from sines to
cosines:

d2Xn(x)

dx2
= −k2nXn(x) ,

dXn

dx

∣∣∣∣
x=0

=
dXn

dx

∣∣∣∣
x=L

= 0

=⇒ Xn(x) = ⟨x|Xn⟩ =
√

2− δn0
L

cos(knx) , kn =
nπ

L
, n = 0, 1, 2, . . . .

(3.6)

The boundary conditions are such as to make H = d2/dx2 a Hermitian operator, so the solutions are a complete,
orthonormal set (the −δn0 in the numerator of the square root is just a trick to make the n = 0 eigenfunction
normalized without having to write it out as a separate case):

⟨Xn|Xm⟩ =
∫ L

0

dxX∗
n(x)Xm(x) =

√
2− δn0

√
2− δm0

L

∫ L

0

dx cos(knx) cos(kmx) = δnm . (3.7)

The eigenvalues k2n give the decay times for the modes:

λn = α2k2n =

(
nπα

L

)2

, n = 0, 1, 2, . . . . (3.8)
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Table 2. One-dimensional diffusion equation with impenetrable boundaries

1. Function: f(x, t) = ⟨x|f(t)⟩ , 0 < x < L

2. Diffusion equation:
1

α2

∂f(x, t)

∂t
=
∂2f(x, t)

∂x2
⇐⇒ 1

α2

d|f(t)⟩
dt

= H|f(t)⟩

3. Boundary conditions:
∂f(x, t)

∂x

∣∣∣∣
x=0

=
∂f(x, t)

∂x

∣∣∣∣
x=L

= 0

4. General solution: f(x, t) =
∞∑

n=0

cnXn(x)e
−λnt ⇐⇒ |f(t)⟩ =

∞∑
n=0

cne
−λnt|Xn⟩

5. Spatial eigenfunctions:
d2Xn(x)

dx2
= −k2nXn(x) ⇐⇒ H|Xn⟩ = −k2n|Xn⟩

dXn(x)

dx

∣∣∣∣
x=0

=
dXn(x)

dx

∣∣∣∣
x=L

= 0

kn =
nπ

L
, λn = α2k2n

Xn(x) =

√
2− δn0
L

cos(knx)

6. Orthonormality : δnm =

∫ L

0

dxX∗
n(x)Xm(x) ⇐⇒ δnm = ⟨Xn|Xm⟩

7. Completeness: δ(x− x′)︸ ︷︷ ︸
= ⟨x|x′⟩

=

∞∑
n=0

Xn(x)X
∗
n(x

′) ⇐⇒ I =

∞∑
n=0

|Xn⟩⟨Xn|

8. Fourier coefficients: cn =

∫ L

0

dxX∗
n(x)ψ(x, 0) ⇐⇒ cn = ⟨Xn|ψ(0)⟩

9. Green function: G(x, t;x′, 0)︸ ︷︷ ︸
= ⟨x|K(t, 0)|x′⟩

=
∞∑

n=0

e−λntXn(x)X
∗
n(x

′) ⇐⇒ K(t, 0) =
∞∑

n=0

e−λnt|Xn⟩⟨Xn|

1

α2

∂G(x, t;x′, t′)

∂t
=
∂2G(x, t;x′, t′)

∂x2
⇐⇒ 1

α2

dK(t, 0)

dt
= HK(t, 0)

G(x, 0;x′, 0) = δ(x− x′) ⇐⇒ K(0, 0) = I

f(x, t) =

∫ L

0

dx′G(x, t;x′, 0)f(x′, 0) ⇐⇒ |f(t)⟩ = K(t, 0)|f(0)⟩

The general time evolution of f(x, t) can now be written as

f(x, t) =

∞∑
n=1

cnXn(x)e
−λnt =

√
1

L
c0 +

√
2

L

∞∑
n=1

cn cos(knx)e
−λnt . (3.9)

It should be clear that we are dealing here with yet another kind of Fourier series, called a Fourier cosine series,
which is suited to the boundary conditions where the first derivative of functions vanishes at the endpoints. At
late times the solution always approaches c0/

√
L; notice that since the quantities we are dealing with must be

positive, c0 cannot be zero.
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We summarize the remaining properties of solutions of the diffusion equation in Table 2. In contrast to the
Schrd̈inger equation, the evolution operator is not unitary (it is Hermitian); it is denoted K(t, 0) and is called
the kernel.

There is another thing we can do with the diffusion equation, and that is to add a source s(x, t):

1

α2

∂f

∂t
− ∂2f

∂x2
= s , (3.10)

When s(x, t) is positive, it describes the appearance of the quantity of interest at the position x and the time t,
and when s(x, t) is negative, it describes the corresponding disappearance.

It is useful to consider a source that is at a particle point x′ in space and blinks on only for an instant at
time t′; the solution for this source is the Green function since the source creates an initial condition immediately
after t′ for which the Green function is the solution. By integrating, we can then find the solution for any source.
This way of getting the solution for the equation with source from the Green function for the equation with
initial conditions is a standard one.

What we are proposing is that the following is the solution of the diffusion equation with source:

f(x, t) = α2

∫ t

−∞
dt′

∫ L

0

dx′G(x, t;x′, t′)s(x′, t′) = α2

∫ ∞

−∞
dt′

∫ L

0

dx′H(t− t′)G(x, t;x′, t′)s(x′, t′) (3.11)

In the first form we say that a source that blinks on at position x′ and time t′ creates an initial condition
immediately after t′, for which the Green function G(x, t;x′, t′) is the solution at position x and time t; because
the diffusion equation is linear, we get the full solution by integrating over all the different possible blinking
sources at positions x′ and at times t′ before the time t we are interested in. The only real question in proposing
this solution is what constant factor to put in front of s(x′, t′) (this amounts to saying what initial condition
the blinking source creates x′ just after t′); not surprisingly, I have chosen the right constant. The second form
in Eq. (3.11) extends the temporal integral to +∞, but includes the unit (Heaviside) step function H(t− t′) so
that sources at t′ > t do not contribute.

We proceed by showing that H(t− t′)G(x, t;x′, t′) satisfies the equation for a δ source:

1

α2

∂H(t− t′)G(x, t;x′, t′)

∂t
− ∂2H(t− t′)G(x, t;x′, t′)

∂x2

=
1

α2

dH(t− t′)

dt︸ ︷︷ ︸
= δ(t− t′)

G(x, t;x′, t′)−H(t− t′)

(
1

α2

∂G(x, t;x′, t′)

∂t
− ∂2G(x, t;x′, t′)

∂x2

)
︸ ︷︷ ︸

= 0 for t > t′

=
1

α2
δ(t− t′)G(x, t;x′, t)︸ ︷︷ ︸

= δ(x− x′)

=
1

α2
δ(t− t′)δ(x− x′) .

(3.12)

Here we use the fact that the derivative of the unit step function is the δ-function, and we use

G(x, t;x′, t′) =
∞∑

n=0

e−λn(t−t′)Xn(x)X
∗
n(x

′) =⇒ G(x, t;x′, t) =
∞∑

n=0

Xn(x)X
∗
n(x

′) = δ(x− x′) . (3.13)

In addition, we use the fact that G(x, t;x′, t′) satisfies the diffusion equation without source for t > t′.
Now it is easy to show that the proposed solution (3.11) satisfies the diffusion equation with source,

1

α2

∂f(x, t)

∂t
− ∂2f(x, t)

∂x2
= α2

∫ ∞

−∞
dt′

∫ L

0

dx′
(

1

α2

∂H(t− t′)G(x, t;x′, t′)

∂t
− ∂2H(t− t′)G(x, t;x′, t′)

∂x2

)
︸ ︷︷ ︸

=
1

α2
δ(x− x′)δ(t− t′)

s(x′, t′)

= s(x, t) .
(3.14)
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If you don’t like the use of the step function, you can work directly with the first form in Eq. (3.11). The
time derivative on the diffusion equation acts in two ways, first on the upper limit of the temporal integral by
evaluating the integrand at t′ = t and second on the Green function itself. The result is

1

α2

∂f(x, t)

∂t
− ∂2f(x, t)

∂x2
=

∫ L

0

dx′ G(x, t;x′, t)︸ ︷︷ ︸
= δ(x− x′)

s(x′, t)

+ α2

∫ t

−∞
dt′

∫ L

0

dx′
(

1

α2

∂G(x, t;x′, t′)

∂t
− ∂2G(x, t;x′, t′)

∂x2

)
︸ ︷︷ ︸

= 0 for t > t′

s(x′, t′)

= s(x, t) .

(3.15)

9


