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Consider the diffusion equation with a source s(x, t):

∂2f

∂x2
− 1

α2

∂f

∂t
= −s .

We’re going to show how to get the general (causal) solution of the diffusion equation with source from the
Green function for the sourceless diffusion equation. This is a standard technique for getting the Green function
for a differential equation with a source, called an inhomogeneous equation, from the initial-value solution of the
corresponding equation without source, called a homogeneous equation.

For this purpose, let’s consider a source of strength s0 that is confined to a tiny length interval ∆x centered
at position x0 and that turns on only for a tiny time interval from time t0 −∆t to time t0, i.e.,

s(x′, t′) =

{
s0 , for x0 −∆x/2 < x′ < x0 +∆x/2 and t0 −∆t < t′ < t0,
0 , otherwise.

Just below, we’re going to use the integral form of the diffusion equation with source, applied to the spacetime
interval ∆x∆t to show that at time t0,

f(x′, t0) =

{
α2s0∆t , for x0 −∆x/2 < x′ < x0 +∆x/2,
0 , otherwise,

(1)

but before getting to this, let’s see why we want to show it. The reason is that Eq. (1) is our key result, key in
that it is always the way we get started in going from a Green function for a homogeneous problem to a Green
function for the corresponding inhomogeneous problem. The reason this works is that this f(x′, t) serves as an
initial condition just after the short interval when the source is on; we can thus use the initial-value solution of
problem 11.1 (now with initial time t0) to write, for t > t0,

f(x, t) =

∫ ∞

−∞
dx′ G(x− x′, t− t0)f(x

′, t0) = G(x− x0, t− t0)α
2s0∆x∆t ,

where

G(x− x0, t− t0) =
e−(x−x0)

2/4α2(t−t0)√
4πα2(t− t0)

is the Green function without source from problem 11.1. We often write the Green function as G(x, t;x0, t0) to
emphasize how it depends on two sets of variables: two initial-condition or source variables, a position x0 and a
time t0, and two final or field variables, a position x and a time t. Here our notation emphasizes that this Green
function depends only on the differences x− x0 and t− t0.

To summarize, provided we can show Eq. (1), we now have the solution for the initial condition produced
by a source of strength s0 at position x0 within ∆x and at time t0 within ∆t. This solution applies for t > t0,
and f(x, t) vanishes for t < t0. We can put in a step function to enforce this causal condition:

f(x, t) = H(t− t0)G(x− x0, t− t0)α
2s0∆x∆t . (2)
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We could avoid the step function by saying the Green function vanishes for t < t0, but the step function reminds
us to make this happen.

Now back to showing Eq. (1). We begin with the integral form of the diffusion equation with source:

1

α2

d

dt

∫ x2

x1

dx f(x, t) =
∂f(x, t)

∂x

∣∣∣∣
x=x2

− ∂f(x, t)

∂x

∣∣∣∣
x=x1

+

∫ x2

x1

dx s(x, t) .

For x′ in the tiny interval ∆x and at the time t0 −∆t, the integral form of the diffusion equation becomes

1

α2
∆x

∂f(x′, t′)

∂t′

∣∣∣∣
t′=t0−∆t

=
∂f(x′, t0 −∆t)

∂x′

∣∣∣∣
x′=x0−∆x/2

− ∂f(x′, t0 −∆t)

∂x

∣∣∣∣
x′=x0+∆x/2

+ s0∆x .

The spatial derivatives vanish because they are evaluated at time t0 −∆t, before the source turns on. We can
approximate the temporal derivative as

∂f(x′, t′)

∂t′

∣∣∣∣
t′=t0−∆t

=
f(x′, t0)− f(x′, t0 −∆t)

∆t
=

f(x′, t0)

∆t
,

where f(x′, t0 −∆t) = 0 because f vanishes before the source turns on. Putting all this together, we have

f(x′, t0) = α2s0∆t .

Since there are no sources at other positions, we get Eq. (1).
Now we’re ready to get the solution for an arbitrary source in terms of an integral over the Green function.

Since the diffusion equation is linear, we can add the solutions for all sources to get the general solution, so we
simply integrate Eq. (1) over all sources s(x0, t0) dx0 dt0:

f(x, t) = α2

∫ ∞

−∞
dt0 H(t− t0)

∫ ∞

−∞
dx0 G(x− x0, t− t0)s(x0, t0)

= α2

∫ t

−∞
dt0

∫ ∞

−∞
dx0 G(x− x0, t− t0)s(x0, t0)

= α2

∫ t

−∞
dt′

∫ ∞

−∞
dx′ G(x− x′, t− t′)s(x′, t′) .

(3)

In the last form, we change the names of the source position and time from (x0, t0) to (x′, t′). Causality is the
fact that the temporal integral stops at time t and can be enforced either by stopping the temporal integral or
including the step function.

We’re now going to work backward to show directly that Eq. (3) is the solution of the diffusion equation with
source s(x, t). We begin by noting that the Green function with the Heaviside function, H(t− t′)G(x−x′, t− t′),
is often called the causal Green function. The derivation we have done shows that the causal Green function
satisfies the equation

∂2H(t− t′)G(x− x′, t− t′)

∂x2
− 1

α2

∂H(t− t′)G(x− x′, t− t′)

∂t
= − 1

α2
δ(x− x′)δ(t− t′) , (4)

i.e., is the solution of the diffusion equation for a δ source that blinks on at time t′ at position x′, bu we’re now
going to show directly that the causal Green function satisfies Eq. (4).

For this task, the step function really comes in handy:

∂2H(t− t′)G(x− x′, t− t′)

∂x2
− 1

α2

∂H(t− t′)G(x− x′, t− t′)

∂t

= − 1

α2
δ(t− t′)G(x− x′, t− t′) +H(t− t′)

(
∂2G(x− x′, t− t′)

∂x2
− 1

α2

∂G(x− x′, t− t′)

∂t

)
.
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We use the fact that the derivative of the step function is the δ-function. As a normalized Gaussian, the Green
function goes to a δ-function when t → t′, so the first term gives the answer we want. For t < t′, the last term
is zero because of the step function, and for t > t′, the Green function satisfies the diffusion equation without
source, so the term in big parentheses is zero (we check this directly below). Thus we have

∂2H(t− t′)G(x− x′, t− t′)

∂x2
− 1

α2

∂H(t− t′)G(x− x′, t− t′)

∂t
= − 1

α2
δ(t− t′)δ(x− x′) , (5)

as promised.
Now let’s check directly that G(x− x′, t− t′) satisfies the diffusion equation for t > t′:

∂G(x− x′, t− t′)

∂t
= − 1

2(t− t′)
G(x− x′, t− t′) +

(x− x′)2

4α2(t− t′)2
G(x− x′, t− t′)

=

(
− 1

2(t− t′)
+

(x− x′)2

4α2(t− t′)2

)
G(x− x′, t− t′) ,

∂G(x− x′, t− t′)

∂x
= − (x− x′)

2α2(t− t′)
G(x− x′, t− t′) ,

∂2G(x− x′, t− t′)

∂x2
= − 1

2α2(t− t′)
G(x− x′, t− t′) +

(
(x− x′)

2α2(t− t′)

)2

G(x− x′, t− t′)

=

(
− 1

2α2(t− t′)
+

(x− x′)2

4α4(t− t′)2

)
G(x− x′, t− t′) ,

=⇒ ∂2G(x− x′, t− t′)

∂x2
− 1

α2

∂G(x− x′, t− t′)

∂t
= 0 .

(6)

We have one last step, to show directly that Eq. (3) is the solution of the inhomogeneous diffusion equation,
but this is now easy. Working from Eq. (5), we have

∂2f(x, t)

∂x2
− 1

α2

∂f

∂t
= α2

∫ ∞

−∞
dt′

∫ ∞

−∞
dx′

(
∂2

∂x2
− 1

α2

∂

∂t

)
H(t− t′)G(x− x′, t− t′)︸ ︷︷ ︸

= − 1

α2
δ(t− t′)δ(x− x′)

s(x′, t′)

= −s(x, t) .

or working from Eq. (6), we have

∂2f(x, t)

∂x2
− 1

α2

∂f

∂t
= −

∫ ∞

−∞
dx′ G(x− x′, 0)︸ ︷︷ ︸

= δ(x− x′)

s(x′, t)

+ α2

∫ t

−∞
dt′

∫ ∞

−∞
dx′

(
∂2G(x− x′, t− t′)

∂x2
− 1

α2

∂G(x− x′, t− t′)

∂t

)
︸ ︷︷ ︸

= 0

s(x′, t′)

= −s(x, t) .
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