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1. INTRODUCTION

We are going to be looking at how to describe and analyze a two-dimensional wave f(x, t)—i.e., a function
of one spatial variable x and time t. The simplest kind of wave is a monochromatic wave traveling in the +x
direction,

f(x, t) = A cos(kx− ωt+ ϕ) . (1.1)

The quantity A is called the (real) amplitude, k is the wave number, ω is the angular frequency, ϕ is the phase,
and the speed of propagation, called the phase velocity, is ω/k = v. The wavelength of the wave is λ = 2π/k,
the period is τ = 2π/ω, and the (ordinary) frequency is ν = 1/τ = ω/2π. Notice that λν = v.

We will find it useful to use Euler’s relation to write f(x, t) as

f(x, t) = Re
(
Aeiϕei(kx−ωt)

)
. (1.2)
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The complex quantity Aeiϕ is called the complex amplitude. Notice that the imaginary part,

Im
(
Aeiϕei(kx−ωt)

)
= A sin(kx− ωt+ ϕ) = A cos(kx− ωt+ ϕ− π/2) , (1.3)

is another wave that is 90◦ out of phase with the real part.1

Since the spatial and temporal dependences of such a wave are related, we don’t really need to be considering
a function of two variables. We could, for example, sit at one spot, say x = 0, and examine the wave’s temporal
dependence, given by f(x = 0, t), as it passes that spot. On the other hand, we could study how the wave looks
in space at a particular time, say t = 0; i.e., we could look at the function f(x, t = 0). In this document we are
generally going to make the latter choice and study the function

f(x) ≡ f(x, t = 0) , (1.4)

but you will want to keep in mind that everything we do can also be applied to a function of time. For a
monochromatic wave, we have

f(x) = A cos(kx+ ϕ) . (1.5)

2. FOURIER SERIES AND SUPERPOSITIONS OF MONOCHROMATIC WAVES

Though a monochromatic wave has the virtue of having a precise angular frequency ω and a precise wave
number k, it is unphysical because it extends over all of space. A physically realistic wave, called a wave packet,
extends only over a finite region of space, with a well-defined start and finish. The purpose of this document
is to show how a wave packet can be constructed as a superposition of monochromatic waves. Monochromatic
waves are important not just because they are simple, but more importantly because they provide the building
blocks for all other kinds of waves.

We begin our investigation by considering the superposition of just two monochromatic waves, which have
the same amplitude and phase and nearly the same wave number:

f(x) = A cos(k1x+ ϕ) +A cos(k2x+ ϕ) . (2.1)

To see what this function looks like, it is useful to introduce complex amplitudes and to write f(x) as

f(x) = Re
(
Aeiϕeik1x +Aeiϕeik2x

)
. (2.2)

Now we go through some mathematical manipulations,

f(x) = Re

(
Aeiϕei(k1+k2)x/2

(
ei(k1−k2)x/2 + e−i(k1−k2)x/2

))
= Re

(
Aeiϕei(k1+k2)x/2 2 cos

(
k1 − k2

2
x

))
, (2.3)

which put f(x) in the form

f(x) = 2A cos

(
k1 − k2

2
x

)
cos

(
k1 + k2

2
x+ ϕ

)
. (2.4)

To say that the two wave numbers are nearly the same means that the wave-number difference ∆k ≡ k1 − k2 is
(in magnitude) much smaller than the average wave number (k1 + k2)/2, i.e.,

|∆k| ≪ k1 + k2
2

≡ k .

1 A wave going in the +x direction must have the dependence kx−ωt; the opposite signs between the spatial
and temporal parts is what sets the wave going in the +x direction. This is the reason that physicists always
use opposite Fourier conventions for space and time. We use eikx as the Fourier function in space, and e−iωt

for the Fourier function in time; if you want to convert the following to physicists’ temporal convention, you
should substitute ωt in place of kx wherever you see a kx. Electrical engineers like to use eiωt for temporal
Fourier functions, but that’s because they didn’t look far enough ahead to see the need for describing waves;
you can always get from the EE convention to the physics one by doing electrical engineering with ejωt and
letting j = −i.
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We can think of f(x) in Eq. (2.4) as a wave cos(kx + ϕ) that has the average wave number k and the
phase ϕ, but whose amplitude 2A cos(∆k x/2) varies slowly and sinusoidally at half the wave-number difference.
When this amplitude has its largest absolute value of 2A, i.e., when ∆k x = nπ where n is an even integer, the
two waves superposed in Eq. (1) are said to interfere constructively ; in contrast, when the amplitude is zero,
i.e., when ∆k x = nπ where n is an odd integer, the waves in Eq. (2.1) are said to interfere destructively. The
functions ±2A cos(∆k x/2) form an envelope for the rapid oscillations of f(x); the rapid oscillations with wave
number k are bounded by this envelope. The phenomenon of periodic constructive and destructive interference
is often called beats.

The lesson here is that in a superposition of two monochromatic waves, destructive interference makes the
wave go to zero at certain places. Perhaps if we use more than two monochromatic waves in the superposition,
we can arrange the destructive interference so that the function f(x) is nonzero only in an isolated region—voilà,
a wave packet.

To see how this can be achieved, we will start with what you know about Fourier series: that any periodic
function can be written as a superposition of cosines and sines. Specifically, suppose fL(x) is periodic over a
length L. Then we can write fL(x) as the Fourier series

fL(x) =
1√
L

(
1

2
a0 +

∞∑
n=1

an cos knx+ bn sin knx

)
, (2.5)

where the wave numbers
kn = 2nπ/L (2.6)

are chosen so that as n runs from 0 to ∞, we include in the series all the sinusoidal (harmonic) functions
(including the constant function) that are periodic over the length L. The reasons for the factor of 1/2 in the
constant term and the overall normalization 1/

√
L become clear as we go along (note that Boas does not include

the 1/
√
L in the formula for a Fourier series).

We can replace the trigonometric functions cos knx and sin knx by complex exponentials e±iknx and rewrite
the Fourier series (2.5) as

fL(x) =
1√
L

∞∑
n=−∞

cne
iknx . (2.7)

It is sensible to let this sum run over both positive and negative integers n, thereby including both eiknx = ei2πnx/L

and its complex conjugate, e−i2πnx/L, in the sum without having to have two terms for each positive n, as in
Eq. (2.5). The price we pay for this is that we have to remember that n and kn can be either positive or negative.
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By using Euler’s relation for the complex exponential, eiknx = cos knx+ i sin knx, we can relate the two kinds of
Fourier coefficients:

c±n =
1

2
(an ∓ ibn) , n = 0, 1, . . . ,∞ . (2.8)

This formula works for c0 = 1
2a0 provided we introduce a mythical b0 = 0. We can invert Eq. (2.8) to give

a0 = 2c0 ,

an = cn + c−n ,

b0 = 0 ,

bn = i(cn − c−n) , n = 1, 2, . . . .
(2.9)

The superposed monochromatic terms in Eq. (2.7) are called the Fourier components of the function fL(x).
We can find the Fourier coefficient cn for the nth Fourier component—i.e., we can invert the Fourier series—by
doing the integral

cn =
1√
L

∫ L/2

−L/2

dx fL(x)e
−iknx . (2.10)

Translated to the coefficients an and bn, the inversion of the Fourier series becomes

an =
2√
L

∫ L/2

−L/2

dx fL(x) cos knx ,

bn =
2√
L

∫ L/2

−L/2

dx fL(x) sin knx ,

n = 0, 1, . . . ,∞ . (2.11)

To make the n = 0 case of these formulas work is the reason we have the factor of 1/2 in the constant term of
Eq. (2.5); notice also that the formula automatically gives b0 = 0, so that case works, too. If fL(x) is a real
function, then an and bn are real, so c−n = c∗n. If fL(x) is an even function, then bn = 0, so c±n = an/2 for
n = 0, 1, . . .∞; if fL(x) is an odd function, then an = 0, so c±n = ∓ibn/2, for n = 0, 1, . . .∞.

Now we’re ready to see what kind of Fourier series is required to represent a function that is nonzero only
over small part of each period. For specificity, let’s consider a function defined on the interval −L/2 ≤ x ≤ L/2
by

ha,L(x) =

{
1/a , for |x| ≤ a/2,
0 , for a/2 ≤ |x| ≤ L/2.

(2.12)
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This function is zero except that it has a flat-topped bump of height 1/a and width a (area under the bump
always equal to 1) centered at the origin.2 Of course, since ha,L(x) is periodic, the same bump is repeated at
each integral multiple of L. For this function the Fourier coefficients (2.10) become3

cn =
1√
L

∫ a/2

−a/2

dx
1

a
e−iknx =

1√
L

sin(kna/2)

kna/2
=

1√
L

sin(nπa/L)

nπa/L
. (2.13)

We should record a couple of observations about these Fourier coefficients. First, for small values of |n|, for
which the period (or wavelength, if you wish) 2π/|kn| = L/|n| of the Fourier function is much bigger than a, the
Fourier coefficients all have approximately the same value,

cn ≃ 1√
L

, for |kn|a ≪ 2π. (2.14)

The reason is that the Fourier function eiknx doesn’t have room even to begin to oscillate within the integral (2.13)
and thus it can be replaced by its value at the origin, which gives cn ≃ c0. Second, for large values of |n|, for
which the period 2π/|kn| is much bigger than a, the magnitude of the Fourier coefficients falls off as 1/|n|.
The reason is that in this situation the integral (2.13) averages over many periods of the Fourier function. The
lesson is that to represent a function with periodic bumps of width a, separated by distance L, we need to have
roughly equal contributions from the Fourier components with |kn|a <∼ 2π, with decreasing contributions from
shorter-period Fourier components. The Fourier components interfere constructively within the bumps at each
integral multiple of L and interfere destructively otherwise.

A corollary of this lesson occurs in the limit a → 0. The “function” in this limit is called the periodic
δ-function:

δL(x) ≡ lim
a→0

ha,L(x) . (2.15)

The “bump” in δL(x) has zero width, but such enormous height that the integral under it is 1; this is the periodic
δ-function, because this bump is repeated at every multiple of L. To represent δL(x) as a Fourier series, we need
Fourier components of all orders, all contributing with a coefficient of the same size cn = 1/

√
L:

δL(x) =
1

L

∞∑
n=−∞

eiknx =
1

L

∞∑
n=−∞

ei2πnx/L . (2.16)

The key property of the δ-function is that for any function fL(x), we have∫ L/2

−L/2

dx δL(x)fL(x) = lim
a→0

∫ L/2

−L/2

dxha,L(x)fL(x) = lim
a→0

1

a

∫ a/2

−a/2

dx fL(x) = fL(0) . (2.17)

The limit in Eq. (2.15)—and, hence, the function δL(x) itself—only makes sense when one does an integral and
takes the limit afterward.

3. FOURIER SERIES AS A COMPLEX VECTOR SPACE

Given two periodic functions fL(x) and gL(x), we can define their inner product as

(gL, fL) = ⟨gL|fL⟩ =
∫ L/2

−L/2

dx g∗L(x)fL(x) . (3.1)

2 The function ha,L(x) is analogous to the envelope of the superposition of two monochromatic waves, but
unlike that situation,we have not put any rapid oscillations inside the envelope. We could do that, but for our
present purposes, it would only add complication without providing additional insight.

3 The function sinx/x is sometimes called the sine cardinal (don’t ask why) function and denoted sincx =
sinx/x. Some people use a different definition: sincx = sin(πx)/πx. We avoid possible confusion here by not
using this abbreviated notation at all.
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For the remainder of this section, we will leave off the subscript L, understanding that all of our functions are
periodic with period L.

Functions can be added and multiplied by a complex number, suggesting that they can be regarded as
elements of a vector space over the complex numbers; the function that takes on the value zero everywhere is
the zero of this vector space. The inner product above is the natural inner product on this vector space. The
only thing one has to be careful about is that only the functions such that

⟨f |f⟩ =
∫ L/2

−L/2

dx |f(x)|2 < ∞ , (3.2)

i.e., those for which the integral of the absolute square is finite, are vectors in the vector space. This space is
called the vector space of square-integrable functions on the interval [−L/2, L/2]. One other thing to be aware
of, although it never makes much difference, is that two functions that differ only on a set of measure zero are
considered to be the same function, since inner products involving the two functions are the same.

We can now see that the Fourier functions,

en(x) =
1√
L
eiknx , n = −∞, . . . ,∞, (3.3)

are orthonormal under the inner product (3.1):

⟨em|en⟩ =
1

L

∫ L/2

−L/2

dx ei(kn−km)x =
1

L

∫ L/2

−L/2

dx ei2π(n−m)x/L = δnm (3.4)

[the unit normalization here is the reason for the 1/
√
L in the Fourier series (2.5) and (2.7)]. For n = m, the

result is obvious; for n ̸= m, the integral covers an integral number of periods of a periodic function, so it is zero.
Since any periodic function can be expanded in terms of the Fourier functions, they span the vector space and
thus are an orthonormal basis. The new feature is that the vector space is infinite-dimensional, and thus this
orthonormal basis has an infinite number of vectors in it.

The Fourier series (2.7) and its inverse (2.10) are examples of the expansion of a vector in a complex vector
space:

f(x) =
∞∑

n=−∞
cnen(x) , cn =

∫ L/2

−L/2

dx e∗n(x)f(x) ,

|f⟩ =
∞∑

n=−∞
cn|en⟩ , cn = ⟨en|f⟩ .

(3.5)

Moreover, the inner product can now be written in terms of the Fourier coefficients as

⟨g|f⟩ =
∞∑

n=−∞
d∗ncn =

∞∑
n=−∞

⟨g|en⟩⟨en|f⟩ , (3.6)

where dn = ⟨en|g⟩ is the nth Fourier coefficient for g(x), just like in a finite-dimensional vector space.
The completeness of the Fourier functions is the fact that any periodic function in the vector space can be

expanded in terms of them. This fact can be written as

f(x) =
∞∑

n=−∞
cnen(x) =

∞∑
n=−∞

en(x)

∫ L/2

−L/2

dx′ e∗n(x
′)f(x′)︸ ︷︷ ︸

= ⟨en|f⟩

=

∫ L/2

−L/2

dx′
( ∞∑

n=−∞
en(x)e

∗
n(x

′)

)
f(x′) . (3.7)

This is simply the statement that if an orthonormal basis is complete, then any vector can be written as a linear
combination of the basis vectors, each multiplied by the component along that basis vector—i.e., basis covers
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all the directions in the vector space. The function in large parentheses is like the unit operator in that when it
“operates” on a function, it returns the same function. The reason this works is that

∞∑
n=−∞

en(x)e
∗
n(x

′) =
1

L

∞∑
n=−∞

eikn(x−x′) =
1

L

∞∑
n=−∞

ei2πn(x−x′)/L = δL(x− x′) , (3.8)

as one sees from the definition of the periodic δ-function in Eq. (2.16). Equation (3.8) is the completeness relation
for the Fourier functions.

Advanced Topic. The inner product (3.1) looks just like an ordinary inner product in a complex vector
space except that we integrate over a continuous variable x instead of summing over a discrete index n. Thus
it is tempting to think in the following way: just as cn = ⟨en|f⟩ is the component of the vector |f⟩ obtained by
projecting onto the Fourier basis vector |en⟩, so f(x) = ⟨x|f⟩ is the component of the vector |f⟩ obtained by
projecting onto a “position basis vector” |x⟩. To be clear, the way we get the value of the function f at the point
x is to project the vector for f onto the position basis vector |x⟩. Just as

|f⟩ =
∞∑

n=−∞
|en⟩⟨en|f⟩ , (3.9)

so we should have

|f⟩ =
∫

dx′ |x′⟩⟨x′|f⟩ , (3.10)

but if this is to work, we must have

⟨x|f⟩ =
∫

dx′ ⟨x|x′⟩⟨x′|f⟩ , (3.11)

which since this is to be true for all periodic functions, means that

⟨x|x′⟩ = δL(x− x′) . (3.12)

The continuous set of position basis vectors are orthogonal and normalized in the sense (3.12), which is called
δ-normalization. Moreover, one sees from Eq. (3.10) that the position vectors satisfy the completeness relation

I =

∫
dx |x⟩⟨x| , (3.13)

where I is the unit operator.
Working in the Fourier basis |en⟩ is called using the Fourier representation of the vectors (functions), and

working in the position basis |x⟩ is called using the position representation. Projecting a vector |f⟩ onto the
Fourier basis gives the Fourier coefficients cn = ⟨en|f⟩, and projecting onto the position basis gives the function
values f(x) = ⟨x|f⟩. Just as for any two bases in a finite-dimensional vector space, the relation between the two
representations is specified by the inner products

⟨x|en⟩ = en(x) =
1√
L
eiknx . (3.14)

Both bases satisfy a completeness relation,

I =
∞∑

n=−∞
|en⟩⟨en| =

∫
dx |x⟩⟨x| ; (3.15)

applying these representations of the unit operator to an arbitrary vector |f⟩ generates the expansions (3.9)
and (3.10). The position-basis representation of the completeness relation is

δL(x− x′) = ⟨x|I|x′⟩ =
∞∑

n=−∞
en(x)e

∗
n(x) =

1

L

∞∑
n=−∞

ei2πn(x−x′)/L , (3.16)
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and the Fourier-basis representation is

δnm = ⟨en|I|em⟩ =
∫

dx e∗n(x)em(x) . (3.17)

These are just different ways of writing the orthonormality conditions for the two bases, and they express the
fact that the “matrix” of inner products, ⟨x|en⟩ = en(x), which does the transformation from the Fourier basis
to the position basis, is unitary.

The use of position basis vectors is not essential, but it makes the notation more compact and easier to use,
and it highlights the structure of the complex vector space of periodic functions.

4. THE FOURIER TRANSFORM

To eliminate the periodic structure in a localized function, we need to include even more Fourier components;
indeed, it should be obvious that we have to include Fourier functions that are not periodic with period L. We
can do this by considering the function ha,L(x) to be defined on the central interval −L/2 ≤ x ≤ L/2 and taking
the limit L → ∞ while keeping a fixed. The limit pushes all the bumps except the central one out beyond
infinity, leaving a function ha(x) with a single bump of width a centered at the origin:

ha(x) = lim
L→∞

ha,L(x) =

{
1/a , for |x| ≤ a/2,
0 , for |x| > a/2.

(4.1)

We now have to take the required limit in the Fourier series (2.7) and in the Fourier coefficient (2.10).
Dealing with the Fourier series first, we write Eq. (2.7) as

ha,L(x) =
1√
L

∞∑
n=−∞

∆k

2π/L
cne

iknx =

∞∑
n=−∞

∆k

2π

√
Lcne

iknx . (4.2)

Here ∆k = 2π/L is the difference between successive values of kn. To deal with the Fourier coefficient (2.10),
we define a function h̃a(k) of wave number k by

h̃a(k) ≡ lim
L→∞

√
Lcn = lim

L→∞

√
LckL/2π . (4.3)

In taking this limit, we write the Fourier coefficient as cn = ckL/2π and think of it as a function of k instead of n.
In taking the limit, both n and L go to infinity, with their ratio n/L = k/2π held constant. What is happening
is that as L gets big, more and more wavelengths for constant wave number k = 2πn/L fit into an interval of
length L, so n gets bigger, too. Taking the limit in Eq. (2.10) gives

h̃a(k) =
sin(ka/2)

ka/2
, (4.4)

and the limit of Eq. (4.2) is

ha(x) = lim
L→∞

∞∑
n=−∞

∆k

2π

√
Lcne

iknx =

∫ ∞

−∞

dk

2π
h̃a(k)e

ikx . (4.5)

The function h̃a(k) is called the Fourier transform of ha(x). Equation (4.5) gives the single-bump function ha(x)
as a continuous superposition of Fourier components, the Fourier coefficient for each component now being given
by the continuous function h̃a(k).

The lessons here are nearly the same as above. To represent a single bump of width a requires a continuous
superposition of monochromatic waves. The Fourier transform h̃a(k) tells how much and with what phase each
monochromatic wave contributes to the superposition [for the bump ha(x), the phase is zero for all Fourier
components]. The Fourier transform is roughly constant for small wave numbers satisfying |k|a <∼ 2π and then
falls off as 1/|k| for larger wave numbers. The Fourier components interfere constructively within the bump near
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x = 0 and interfere destructively otherwise. The relation between the width of the function and the effective
width of the Fourier transform is an expression of the uncertainty principle.

A corollary of this lesson occurs in the limit a → 0. The “function” in this limit is called the δ-function:

δ(x) ≡ lim
a→0

ha(x) . (4.6)

The “bump” in δ(x) has zero width, but such enormous height that the integral under it is 1. To represent δ(x)
in terms of a Fourier transform, we need all Fourier components contributing to the superposition with Fourier
coefficients lima→0 h̃a(k) = 1:

δ(x) =

∫ ∞

−∞

dk

2π
eikx . (4.7)

The key property of the δ-function is that for any function f(x), we have∫ ∞

−∞
dx δ(x)f(x) = lim

a→0

∫ ∞

−∞
dxha(x)f(x) = lim

a→0

1

a

∫ a/2

−a/2

dx f(x) = f(0) . (4.8)

The limit in Eq. (4.6)—and, hence, the function δ(x) itself—only makes sense when one does an integral and
takes the limit afterward.

It takes only a little work now to find the general relation between a function and its Fourier transform. We
start with a periodic function fL(x), whose Fourier series is given by Eq. (2.7) and whose Fourier coefficients
coefficients are given by Eq. (2.10). We then take the limit L → ∞ so that the central interval −L/2 ≤ x ≤ L/2
occupies the entire real line. Following through the same steps as for the bump function hL(x), one sees that
the resulting function f(x) is related to the Fourier transform as in Eq. (4.5),

f(x) =

∫ ∞

−∞

dk

2π
f̃(k)eikx , (4.9)

and the Fourier transform f̃(k) ≡ limL→∞
√
Lcn = limL→∞

√
LckL/2π is now given by

f̃(k) =

∫ ∞

−∞
dx f(x)e−ikx , (4.10)

where we take the limit in Eq. (2.10). Equations (4.9) and (4.10) are called a Fourier-transform pair. The
Fourier transform is the most important integral transform in physics.

A caution: Now that you have seen this “derivation” of the Fourier transform from the Fourier series, which
though instructive, isn’t really rigorous, you should put the derivation away in the corner of your mind and forget
about it. The derivation is not a tool for doing anything. The right mathematical tools are the Fourier series
pair (2.7) and (2.10) or the Fourier transform pair (4.9) and (4.10); you should apply these two tools, not the
derivation, when you need them.

You will often see the Fourier transform in slightly different guises. The chief one of these is that the 1/2π
in the k integral can be put in the x integral instead, or it can be distributed symmetrically as a 1/

√
2π in both

the k and x integrals. I like the convention used here, because all you have to remember is that the integration
measure for wave number is always dk/2π (or dω/2π for a temporal Fourier transform); what this is telling us is
that despite our use of wave number k or angular frequency ω, the natural variable in Fourier space is reduced
wave number, k/2π = 1/λ, or frequency, ν = ω/2π = 1/τ .

As another example of different guises, when dealing with time and angular frequency instead of position
and wave number, physicists almost universally use the opposite sign convention in the complex exponentials,
i.e.,

f(t) =

∫ ∞

−∞

dω

2π
f̃(ω)e−iωt and f̃(ω) =

∫ ∞

−∞
dt f(t)eiωt (4.11)

(see footnote 1); engineers, on the other hand, tend to stick with the original sign convention when dealing
with time and frequency. Another notation you will often see leaves the tilde off the Fourier transform, letting
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Properties of the Fourier transform

1. Linearity : h(x) = αf(x) + βg(x) ⇐⇒ h̃(k) = αf̃(k) + βg̃(k)

2. Conjugation: h(x) = f∗(x) ⇐⇒ h̃(−k) = f̃∗(k)

3. Reality : f(x) = f∗(x) ⇐⇒ f̃(−k) = f̃∗(k)

4. Parity : h(x) = f(−x) ⇐⇒ h̃(k) = f̃(−k)

5. Even-odd symmetry : f(x) = ±f(−x) ⇐⇒ f̃(k) = ±f̃(−k)

6. Product : h(x) = f(x)g(x) ⇐⇒ h̃(k) =

∫ ∞

−∞

dk′

2π
f̃(k′)g̃(k − k′)

7. Convolution: h(x) =

∫ ∞

−∞
dx′ f(x′)g(x− x′) ⇐⇒ h̃(k) = f̃(k)g̃(k)

8. Spatial derivative: h(x) =
dnf(x)

dxn
⇐⇒ h̃(k) = (ik)nf̃(k)

9. Fourier derivative: h(x) = (−ix)nf(x) ⇐⇒ h̃(k) =
dnf(k)

dkn

10. Completeness: f(x) = δ(x− x′) =

∫ ∞

−∞

dk

2π
eik(x−x′) ⇐⇒ f̃(k) = e−ikx′

the dependent variable, x or k, indicate whether one is dealing with the function f(x) or its Fourier transform
f̃(k). Yet another possibility, used by Boas to distinguish further a function from its Fourier transform, is to use
different letters for a function (f in Boas) and its Fourier transform (g in Boas); this notation, initially attractive
for its clarity, quickly becomes untenable since one doesn’t want to call all functions f . Boas also uses a different
letter, α, for the Fourier variable k, but this is decidedly heterodox notation.

The table lists properties of the Fourier transform. Notice that the reality property is a special case of
conjugation and that even-odd symmetry is a special case of parity. Combining reality and even-odd symmetry,
one has that a real, even function has a Fourier transform that is real and even and a real, odd function has
a Fourier transform that is pure imaginary and odd. The spatial-derivative property says that the derivative
operator, d/dx, in the spatial domain corresponds to multiplication by ik in the Fourier domain; this is perhaps
the most useful property of the Fourier transform, since it turns linear differential equations in space into algebraic
equations in the Fourier domain.

Completeness of the Fourier functions is the statement that any function can be expanded in terms of the
Fourier functions eikx, and this means that for any function f(x),

f(x) =

∫ ∞

−∞

dk

2π
f̃(k)eikx =

∫ ∞

−∞

dk

2π
eikx

∫ ∞

−∞
dx′ f(x′)e−ikx′

=

∫ ∞

−∞
dx′ f(x′)

∫ ∞

−∞

dk

2π
eik(x−x′) . (4.12)

The only way this can be true for all functions is to have the completeness property,∫ ∞

−∞

dk

2π
eik(x−x′) = δ(x− x′) , (4.13)

which is the same as the definition of the δ-function in Eq. (4.7). The inverse of the completeness property is
the physical statement that the Fourier transform of a plane wave eik

′x is a δ-function, i.e., has only one Fourier
component:

f(x) = eik
′x ⇐⇒ f̃(k) =

∫ ∞

−∞
dx ei(k

′−k)x = 2πδ(k′ − k) . (4.14)
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The only properties that might present some difficulty are the product and convolution properties, but even
these are easy to derive using the completeness property (check it!). The product and convolution properties
are inverses of one another. The product property says that the Fourier transform of a product of two functions
is the convolution of the Fourier transforms of those two functions, whereas the convolution property says that
the Fourier transform of the convolution of two functions is the product of the Fourier transforms of the two
functions. These two properties are important in the theory of dispersion and in the theory of signal processing.

An important special case of the product property occurs when g(x) = f∗(x), so that h(x) = |f(x)|2:∫ ∞

−∞
dx |f(x)|2eikx = h̃(k) =

∫ ∞

−∞

dk′

2π
f̃(k′)f̃∗(k′ − k) . (4.15)

This special case is called Parseval’s relation. When evaluated at k = 0, Parseval’s relation reduces to∫ ∞

−∞
dx |f(x)|2 =

∫ ∞

−∞

dk

2π
|f̃(k)|2 . (4.16)

We now give some examples of Fourier-transform pairs, together with comments about their significance.

f(x) =

{
eiκx , for |x| ≤ a/2
0 , for |x| > a/2

⇐⇒ f̃(k) =
sin[(k − κ)a/2]

(k − κ)/2

f(x) =

{
cosκx , for |x| ≤ a/2
0 , for |x| > a/2

⇐⇒ f̃(k) =
1

2

(
sin[(k − κ)a/2]

(k − κ)/2
+

sin[(k + κ)a/2]

(k + κ)/2

)
f(x) =

{
sinκx , for |x| ≤ a/2
0 , for |x| > a/2

⇐⇒ f̃(k) =
1

2i

(
sin[(k − κ)a/2]

(k − κ)/2
− sin[(k + κ)a/2]

(k + κ)/2

) (4.17)

Notice that the second and third of these pairs follows from the first by using Euler’s relation on eiκx. The
first is an example of what we set out to do in this document, putting rapid oscillations within an envelope of
limited spatial extent: when κa ≫ 2π, the function f(x) is a wave packet of unit height and spatial extent a
with wave number κ, unit height. The Fourier transform is concentrated near k = κ: for |k − κ|a ≪ 1, its value
is approximately a, and for |k − κ|a ≫ 1, it falls off as 2/|k − κ|.

In the following examples, H(x) stands for the Heaviside step function

H(x) =

{
0 , for x < 0,
1 , for x > 0.

(4.18)

f(x) = H(x)e−γxeiκx =

{
0 , for x < 0
e−γxeiκx , for x > 0

⇐⇒ f̃(k) =
1

i

1

k − κ− iγ
=

1

i

k − κ+ iγ

(k − κ)2 + γ2

f(x) = H(−x)eγxeiκx =

{
eγxeiκx , for x < 0
0 , for x > 0

⇐⇒ f̃(k) = i
1

k − κ+ iγ
= i

k − κ− iγ

(k − κ)2 + γ2

f(x) = e−γ|x|eiκx ⇐⇒ f̃(k) =
2γ

(k − κ)2 + γ2
,

f(x) = e−γ|x| cosκx ⇐⇒ f̃(k) =
γ

(k − κ)2 + γ2
+

γ

(k + κ)2 + γ2

f(x) = e−γ|x| sinκx ⇐⇒ f̃(k) =
1

i

(
γ

(k − κ)2 + γ2
− γ

(k + κ)2 + γ2

)
(4.19)

All these transform pairs follow from the first one in the list, which written as an inverse Fourier transform,
becomes

1

2πi

∫ ∞

−∞
dk

eikx

k − κ− iγ
= H(x)e−γxeiκx . (4.20)
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This is a special case of some very general results that you will learn when you study contour integrals in complex
analysis.

Our last set of transform pairs involves Fourier transforms of Gaussian functions.

f(x) =

√
γ

π
e−γx2

eiκx ⇐⇒ f̃(k) = e−(k−κ)2/4γ

f(x) =

√
γ

π
e−γx2

cosκx ⇐⇒ f̃(k) =
1

2

(
e−(k−κ)2/4γ + e−(k+κ)2/4γ

)
f(x) =

√
γ

π
e−γx2

cosκx ⇐⇒ f̃(k) =
1

2i

(
e−(k−κ)2/4γ − e−(k+κ)2/4γ

)
(4.21)

You should notice that the spatial Gaussian here is normalized to unity, i.e.,∫ ∞

−∞
dx

√
γ

π
e−γx2

= f̃(κ) = 1 . (4.22)

In all three sets of transform pairs, the function f(x) can be thought of as a wave packet. Only in the
first set is the wave packet strictly localized, but in the second two sets, the wave packet goes to zero either
exponentially or as a Gaussian, which is fast enough that the packet can be regarded as localized. The relation
between the width of the wave packet and the width of its Fourier transform is an example of the uncertainty
principle.

5. THE δ-FUNCTION

The δ-function plays a crucial role in Fourier-transform theory. Its most useful representation, given in
Eq. (4.7) and repeated here,

δ(x) =

∫ ∞

−∞

dk

2π
eikx , (5.1)

says that it is the function whose Fourier transform is a constant. The integral in Eq. (5.1) doesn’t converge in
any conventional sense, but what it conveys is that for x ̸= 0, the oscillations of eikx average the integral over
k to zero, and for x = 0, the integral is so divergent as to provide the peak of the δ-function at x = 0. The
δ-function can also be thought of as the limit of a function with a narrow width and a high central peak that is
normalized so that the integral over the function is 1. Both these ways of thinking about the δ-function indicate
that it is not a real function, but rather is a mathematical tool that can be used inside integrals that tame the
divergences. Notice that the δ-function, no matter how you think about it, is real and even, and this is reflected
in that its (constant) Fourier transform is real and even.

The Fourier transform pairs provide examples of highly peaked functions that limit to the δ-function and
how their Fourier transforms limit to 1:

ha(x) =

{
1/a , for |x| ≤ a/2
0 , for |x| > a/2

δ(x) = lim
a→0

ha(x) h̃a(k) =
sin(ka/2)

ka/2
lim
a→0

h̃a(k) = 1

hγ(x) =
γ

2
e−γ|x| δ(x) = lim

γ→∞

γ

2
e−γ|x| h̃γ(k) =

γ2

k2 + γ2
lim
γ→∞

h̃γ(k) = 1

hγ(x) =

√
γ

π
e−γx2

δ(x) = lim
γ→∞

√
γ

π
e−γx2

h̃γ(k) = e−k2/4γ lim
γ→∞

h̃γ(k) = 1

(5.2)
To drive the point home, let’s write out the Fourier transform for the latter two of these:

γ

2
e−γ|x| =

∫ ∞

−∞

dk

2π

γ2

k2 + γ2
eikx ,√

γ

π
e−γx2

=

∫ ∞

−∞

dk

2π
e−k2/4γeikx .

(5.3)
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The γ → ∞ limit of both of these gets you to the divergent Fourier transform (5.1) for δ(x).
The key property of the δ-function, expressed in the completeness property (4.12), is that when integrated

against any function, the δ-function picks out the value of the function at the peak of the δ-function:

f(x) =

∫ ∞

−∞
dx′ f(x′)δ(x′ − x) . (5.4)

Equation (4.8) shows how this property comes from taking a limit on a highly peaked function and thus illustrates
what the limits in Eq. (5.2) actually mean: the limit only makes sense when integrating over the δ-function, and
then the integral should be done first and the limit taken afterward. That Eq. (5.4) holds for any function f(x),
means that we can also write

f(x) =

∫ x+ϵ

x−ϵ

dx′ f(x′)δ(x′ − x) , (5.5)

which holds no matter how small ϵ is. This result can also be regarded as the defining property of the δ-function.
There is another way to represent the δ-function, as the derivative of the Heaviside function:

δ(x) =
dH(x)

dx
= H ′(x) . (5.6)

Intuitively, this works because the derivative of the Heaviside function is zero everywhere except at x = 0, where
it is infinite. More generally, the derivative of a function at any discontinuity in the function, though ill defined
by any standard definition, can be treated as a δ-function within integrals. Thus we can justify Eq. (5.6) by
integrating over H ′(x) and doing an integration by parts:∫ ϵ

−ϵ

dx f(x)H ′(x) = f(x)H(x)|x=ϵ
x=−ϵ −

∫ ϵ

−ϵ

dx f ′(x)H(x)

= f(ϵ)−
∫ ϵ

0

dx f ′(x)

= f(ϵ)− [f(ϵ)− f(0)]

= f(0) .

(7)

We can also justify Eq. (5.6) by using the first Fourier transform pair in Eq. (4.19). Let hγ(x) = H(x)e−γx, so

that H(x) = limγ→0 hγ(x). The Fourier transform of hγ(x) is h̃γ(k) = 1/i(k − iγ), so the Fourier transform of

h′
γ(x) is ikh̃γ(x) = k/(k − iγ), which limits to 1 as γ goes to zero.

There is occasional need for derivatives of the δ-function, so let’s take a look at the first derivative δ′(x).
Thinking in terms of limits of highly peaked functions, we can see that δ′(x) is the limit of a function with two
high peaks, a positive peak just to the left of x = 0 and a negative peak just to right of x = 0. If we think in
terms of Fourier transforms, the Fourier transform of δ′(x) is equal to ik. The best way to see how δ′(x) can be
used is to see what it does within an integral:∫ ϵ

−ϵ

dx f(x)δ′(x) = f(x)δ(x)|x=ϵ
x=−ϵ −

∫ ϵ

−ϵ

dx f ′(x)δ(x) = −f ′(0) . (8)

A sometimes useful formula, which is a bit surprising, is that

xδ′(x) = −δ(x) . (5.9)

The easiest way to see this is, again, to look at an integral:∫ ϵ

−ϵ

dx f(x)xδ′(x) = − d

dx
xf(x)

∣∣∣∣
x=0

= −f(0) . (5.10)

One can also think in terms of Fourier transforms. Multiplying by −ix in the spatial domain is the same as
differentiating with respect to k in the Fourier domain; since the Fourier transform of δ′(x) is ik, differentiating
with respect to k gets us a constant Fourier transform, i, which is the Fourier transform of −ixδ′(x) and also
the transform of iδ(x). So δ(x) = −xδ′(x).
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Properties of the δ-function

f(x) =

∫ x+ϵ

x−ϵ

dx′ f(x′)δ(x′ − x) for any value of ϵ, no matter how small ,

δ(x) =

∫ ∞

−∞

dk

2π
eikx This means that the Fourier transform δ̃(k) = 1.

δ(x) = lim
ϵ→0

hϵ(x) where hϵ(x) =

{
1/ϵ , for |x| ≤ ϵ/2
0 , for |x| > ϵ/2

δ(x) = lim
ϵ→0

1

2ϵ
e−|x|/ϵ

δ(x) = lim
ϵ→0

1√
πϵ

e−x2/ϵ

δ(x) = H ′(x)

δ(x) = −xδ′(x)

δ(bx) = δ(|b|x) = 1

|b|
δ(x)

δ
(
f(x)

)
=
∑
j

δ
(
f ′(xj)(x− xj)

)
=
∑
j

1

|f ′(xj)|
δ(x− xj) where the sum runs over xj such that f(xj) = 0

Since the main use of δ-functions is in integrals, we need to know how to change it when its argument
changes. Let’s first consider δ(bx), where b > 0; now consider the integral∫ ϵ

−ϵ

dx f(x)δ(bx) =

∫ bϵ

−bϵ

dy

b
f(y/b)δ(y) =

f(0)

b
, (5.11)

where we make the change of integration variable y = bx. This shows us that δ(bx) = δ(x)/b. The way we did
the change of variables requires that b > 0, but the evenness of the δ-function means that

δ(bx) = δ(|b|x) = 1

|b|
δ(x) , (5.12)

which applies whether b is positive or negative.
A more general result that follows from Eq. (5.12) concerns how to handle δ

(
f(x)

)
. We get at this by noting

that δ
(
f(x)

)
is nonzero only at the zeros xj of f(x), near which it can be expanded as f(x) = f ′(xj)(x − xj).

So we have

δ
(
f(x)

)
=
∑
j

δ
(
f ′(xj)(x− xj)

)
=
∑
j

1

|f ′(xj)|
δ(x− xj) , (5.13)

where the sum is over the zeros of f(x). Messing up changes of variables in the argument of a δ-function is one
of the most common mistakes in using the δ-function.

One thing we have left hanging is the relation between the periodic δ-function δL(x) and the δ(x), so let’s
figure that out. We begin with

δL(x) =

∫
dx′ δ(x′ − x)δL(x

′) =
∞∑

n=−∞

∫ L/2−nL

−L/2−nL

dx′ δ(x′ − x)δL(x
′) , (5.14)

where in the second form, we have divided up the integral on the entire real line into integrals over all the
segments of length L. Now let’s change the integral variable to y = x− nL, so that all the integrals are over the
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same interval,

δL(x) =

∞∑
n=−∞

∫ L/2

−L/2

dy δ(y + nL− x)δL(y + nL) =

∞∑
n=−∞

∫ L/2

−L/2

dy δ(y + nL− x)δL(y) (5.15)

where the second equality again follows from the periodicity of the periodic δ-function. Now we use the integration
property of δL(y) to get the result:

1

L

∞∑
n=−∞

ei2πnx/L = δL(x) =
∞∑

n=−∞
δ(x− nL) . (5.16)

This is pretty much what one would expect: δL(x) consists of a series of δ-peaks at the points x = nL. The
Fourier transform of the periodic δ-function has two nice forms:

δ̃L(k) =

∫ ∞

−∞
dx δL(x)e

−ikx =
1

L

∞∑
n=−∞

∫ ∞

−∞
dx ei(kn−k)x︸ ︷︷ ︸

= 2πδ(k − kn)

=
2π

L

∞∑
n=−∞

δ

(
k − 2πn

L

)

δ̃L(k) =

∫ ∞

−∞
dx δL(x)e

−ikx =
∞∑

n=−∞

∫ ∞

−∞
dx δ(x− nL)e−ikx =

∞∑
n=−∞

e−iknL

(5.17)

You should notice the symmetry under exchange of x and k in the forms for δL(x) and δ̃L(k).
The δ-function is a huge convenience. It makes our lives easier by allowing us to write equations for things

where without it, we would have always to be talking about taking limits on highly peaked functions. Use of
the δ-function means that we already know how to take those limits within integrals, so we don’t have to be
referring to them constantly. But using the δ-function requires that you think, because sometimes using it can
blow up in your face. It’s a little like electricity: a huge convenience, which we couldn’t do without, but that
doesn’t mean you go sticking a screwdriver into an electrical outlet. Problems with the δ-function arise when
its peak coincides with a place where other functions have discontinuities or even δ-like divergences. When that
happens, you can get nonsense for an answer and have to retreat to modeling the discontinuities and divergences
by actual functions; that should tell you how properly to use the δ-function in the problem at hand.

6. FOURIER TRANSFORMS AS A COMPLEX VECTOR SPACE (Advanced Topic)

The functions on the real line make up a complex vector with the inner product

(g, f) = ⟨g|f⟩ =
∫ ∞

−∞
dx g∗(x)f(x) . (6.1)

Just as in Sec. 3, we have to restrict the vector space to functions whose squared magnitude is finite,

⟨f |f⟩ =
∫ ∞

−∞
dx |f(x)|2 < ∞ ; (6.2)

the resulting vector space is called the space of square-integrable functions on the real line.
We can plug Fourier transforms into the definition of the inner product to convert it from the spatial domain

to the Fourier domain:

⟨g|f⟩ =
∫ ∞

−∞
dx g∗(x)f(x)

=

∫ ∞

−∞
dx

∫ ∞

−∞

dk′

2π
g̃∗(k′)e−ik′x

∫ ∞

−∞

dk

2π
f̃(k)eikx

=

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
g̃∗(k′)f̃(k)

∫ ∞

−∞
dx ei(k−k′)x︸ ︷︷ ︸

= 2πδ(k − k′)

=

∫ ∞

−∞

dk

2π
g̃∗(k)f̃(k) .

(6.3)
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The Fourier-domain version of the inner product looks just the same as the spatial version except for that factor
of 1/2π, which we’re going to take account of as we go along. Notice that when g = f , this result simplifies to
Eq. (4.16).

Just as we did for periodic functions, we are tempted to regard function values, f(x) in space and f̃(k) in
the Fourier domain, as continuous “components” of the vector |f⟩, i.e., f(x) = ⟨x|f⟩ and f̃(k) = ⟨k|f⟩. To get
this to work, let’s make the position basis vectors |x⟩ be δ-normalized and complete4:

⟨x|x′⟩ = δ(x− x′) , I =

∫ ∞

−∞
dx |x⟩⟨x| . (6.4)

These are consistent because

⟨x|x′⟩ = ⟨x|I|x′⟩ =
∫ ∞

−∞
dx′′ ⟨x|x′′⟩⟨x′′|x′⟩ =

∫ ∞

−∞
dx′′ δ(x− x′′)δ(x′′ − x′) = δ(x− x′) . (6.5)

A vector |f⟩ has the position representation

|f⟩ = I|f⟩ =
∫ ∞

−∞
dx |x⟩⟨x|f⟩ =

∫ ∞

−∞
dx f(x)|x⟩ . (6.6)

The transformation from the position basis vectors to the Fourier basis vectors is given by the Fourier
transform:

⟨x|f⟩ = f(x) =

∫ ∞

−∞

dk

2π
f̃(k)eikx =

∫ ∞

−∞

dk

2π
eikx⟨k|f⟩ . (6.7)

If we let ⟨x|k⟩ = eikx describe the transformation between position and Fourier basis vectors, then the Fourier
transform (6.7) becomes

⟨x|f⟩ =
∫ ∞

−∞

dk

2π
⟨x|k⟩⟨k|f⟩ , (6.8)

and we can nail things down by realizing that this is the completeness property for the Fourier-domain vectors,

I =

∫ ∞

−∞

dk

2π
|k⟩⟨k| . (6.9)

The appropriate δ-normalization now follows from

⟨k|k′⟩ = ⟨k|I|k′⟩ =
∫ ∞

−∞
dx ⟨k|x⟩⟨x|k′⟩ =

∫ ∞

−∞
dx ei(k

′−k)x = 2πδ(k − k′) = δ

(
k

2π
− k′

2π

)
. (6.10)

Here is a summary. The square-integrable functions on the real line are vectors in a complex vector space.
The values of a function in space are the components of the vector in the position basis, f(x) = ⟨x|f⟩, and the
values of the Fourier transform are the components of the vector in the Fourier basis, f̃(k) = ⟨k|f⟩. The two
bases are related by the inner products

⟨x|k⟩ = eikx , (6.11)

and they have the following properties:

δ-normalization: ⟨x|x′⟩ = δ(x− x′) ⟨k|k′⟩ = 2πδ(k − k′) = δ

(
k

2π
− k′

2π

)
Completeness: I =

∫ ∞

−∞
dx |x⟩⟨x| I =

∫ ∞

−∞

dk

2π
|k⟩⟨k|

(6.12)

4 The vector space of functions here, i.e., the space of square-integrable functions on the real line, is not the
same as the vector space of square-integrable periodic functions considered in Sec. 3, so the kets |x⟩ here are not
the same as the ones in Sec. 3.
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The Fourier transform is the basis change from position to Fourier basis:

⟨x|f⟩ = ⟨x|I|f⟩ =
∫ ∞

−∞

dk

2π
⟨x|k⟩⟨k|f⟩

∫ ∞

−∞

dk

2π
eikx⟨k|f⟩ ,

⟨k|f⟩ = ⟨k|I|f⟩ =
∫ ∞

−∞
dx ⟨k|x⟩⟨x|f⟩

∫ ∞

−∞
dx e−ikx⟨x|f⟩ .

(6.13)

The two forms of the inner product follow from using the completeness properties:

⟨g|f⟩ = ⟨g|I|f⟩ =
∫ ∞

−∞
dx ⟨g|x⟩⟨x|f⟩ ,

⟨g|f⟩ = ⟨g|I|f⟩ =
∫ ∞

−∞

dk

2π
⟨g|k⟩⟨k|f⟩ .

(6.14)

Notice that as promised earlier, the difference between the position and Fourier domains is that we work with x
in the position domain and k/2π in the Fourier domain.

The reason this vector space of square-integrable functionsn is important is that in real problems, we are
often confronted with a linear differential or partial-differential equation. The linear differential operator in this
equation becomes a Hermitian (self-adjoint) linear operator in the space of square-integrable functions, and we
solve for the complete set of orthonormal eigenfunctions (eigenvectors) and eigenvalues. Let’s suppose, then,
that we have an orthonormal set of vectors |fn⟩, for n = 0, . . . ,∞, perhaps arising from some such aproblem;
the corresponding orthonormal functions are fn(x) = ⟨x|fn⟩, and their Fourier transforms are f̃n(k) = ⟨k|fn⟩.
The orthonormality property of these functions is

δnm = ⟨fn|fm⟩ =
∫ ∞

−∞
dx ⟨fn|x⟩⟨x|fm⟩ =

∫ ∞

−∞

dk

2π
⟨fn|k⟩⟨k|fm⟩ . (6.15)

and their completeness is expressed as

I =
∞∑

n=0

|fn⟩⟨fn| , (6.16)

which has the position-basis and Fourier-basis forms

δ(x− x′) = ⟨x|I|x′⟩ =
∞∑

n=0

⟨x|fn⟩⟨fn|x′⟩ ,

2πδ(k − k′) = ⟨k|I|k′⟩ =
∞∑

n=0

⟨k|fn⟩⟨fn|k′⟩ .
(6.17)

We can easily go back and forth between the position and Fourier bases and the new basis:

⟨x|f⟩ =
∞∑

n=0

⟨x|fn⟩⟨fn|f⟩ , ⟨k|f⟩ =
∞∑

n=0

⟨k|fn⟩⟨fn|f⟩ ,

⟨fn|f⟩ =
∫ ∞

−∞
dx ⟨fn|x⟩⟨x|f⟩ , ⟨fn|k⟩ =

∫ ∞

−∞

dk

2π
⟨fn|k⟩⟨k|f⟩ .

(6.18)
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