
Phys 366 Mathematical Methods of Physics Fall 2015

Quiz 5 2015 November 19
(100 points)

Problem 1 (100 points) The general solution of the one-dimensional wave equation,

∂2f

∂x2
− 1

v2
∂2f

∂t2
= 0 ,

is a superposition of a wave going to the right and a wave going to the left. A particular
solution is specified by giving the initial waveform, f(x, 0), and the first time derivative at
t = 0,

∂f(x, t)

∂t

∣∣∣∣
(x,0)

.

In this problem we work with a wave that is propagating to the right. Such a wave is just
the initial waveform propagated to the right, i.e., in an equation,

f(x, t) = f(x− vt, 0) .

(a) (15 points) Show that for a wave going to the right, the first time derivative of f
is given by

∂f(x, t)

∂t
= −v

∂f(x, t)

∂x
.

We now introduce the Fourier transform f̃(k, t) with respect to the spatial variable,

f(x, t) =

∫ ∞

−∞

dk

2π
f̃(k, t)eikx , f̃(k, t) =

∫ ∞

−∞
dx f(x, t)e−ikx .

We already know that f̃(k, t) satisfies the ordinary differential equation (k is just a constant
as we consider this equation)

d2f̃(k, t)

dt2
+ v2k2f̃(k, t) = 0 .

(b) (30 points) Show that the condition of part (a) is equivalent to

∂f̃(k, t)

∂t
= −ivkf̃(k, t) .

You will need to assume that f(x, t) goes to zero at x = ±∞, but this is not much of an
assumption, since it is required to have a meaningful Fourier transform.

(c) (30 points) Find the general solution of differential equation for f̃(k, t) in terms
of initial values at t = 0, given our assumption of a right-going wave.

(d) (15 points) Show that your solution in part (c) corresponds to a wave of arbitrary
shape going to the right.



Problem 1. The assumption is that we have a wave going to the right, for which

f(x, t) = f(x− vt, 0) .

(a) The key here is that since the dependence on x and t appears only in the combination x − vt, we can
relate a derivative with respect to t to a derivative with respect to x:

∂f(x, t)

∂t
=

∂f(x− vt, 0)

∂t
= −v

∂f(x− vt, 0)

∂x
= −v

∂f(x, t)

∂x
.

We now consider the partial Fourier transform f̃(k, t), given by

f(x, t) =

∫ ∞

−∞

dk

2π
f̃(k, t)eikx , f̃(k, t) =

∫ ∞

−∞
dx f(x, t)e−ikx ;

f̃(k, t) satisfies the ordinary differential equation

d2f̃(k, t)

dt2
+ v2k2f̃(k, t) = 0 .

(b) Differentiating the formula for the Fourier transform, we get

∂f(x, t)

∂x
=

∫ ∞

−∞

dk

2π
ikf̃(k, t)eikx .

This is the hopefully familiar result that a spatial derivative, ∂/∂x, is equivalent to multiplying by ik in the
Fourier domain. But we can also use the result of part (a) to calculate ∂f/∂x in another way:

∂f(x, t)

∂x
= −1

v

∂f(x, t)

∂t
= −1

v

∫ ∞

−∞

dk

2π

∂f̃(k, t)

∂t
eikx

Comparing these two equations, we get that

∂f̃(k, t)

∂t
= −ivkf̃(k, t) .

We can also do this more directly, using an integration by parts:

∂f̃(k, t)

∂t
=

∫ ∞

−∞
dx

∂f(x, t)

∂t
e−ikx

= −v

∫ ∞

−∞
dx

∂f(x, t)

∂x
e−ikx

= −vf(x, t)e−ikx
∣∣x=∞
x=−∞ + v

∫ ∞

−∞
dx ∂f(x, t)(−ik)e−ikx

= −ivkf̃(k, t) .

(c) The general solution of the differential equation for f̃(k, t) is

f̃(k, t) = f̃(k, 0) cos(vkt) +
1

vk

∂f̃(k, t)

∂t

∣∣∣∣
(k,0)

sin(vkt)

= f̃(k, 0)[cos(vkt)− i sin(kvt)]

= f̃(k, 0)e−ivkt .

(d)

f(x, t) =

∫ ∞

−∞

dk

2π
f̃(k, t)eikx =

∫ ∞

−∞

dk

2π
f̃(k, 0)eik(x−vt) = f(x− vt, 0) .

So we get back to where we started with a wave of arbitrary shape going to the right.

1


