Problem 1.
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Bu(t) = /Oo dw Bi(w)e ! The Fourier transform of Su(t) is fo(w).

0(t) :/ 2—w [—iwd(w)]e ™" The Fourier transform of v(t) is —iwd(w). This is the
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d/dt — —iw rule for translating a temporal derivative to
the temporal Fourier domain.
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Equating Fourier transforms on the two sides of Eq. (1) gives

—iwd(w) + fi(w) = % — ) = %Bff“’i)
(c) One way to proceed is to notice that
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and then to invoke the convolution theorem to write

oo , 00 , , t —B(t—t’
t):/_ dt’%s(t—t’)z/_ dt’%H(t—t’)e‘ﬂ(t_”:/_ dt’ %) f@).

=g(t—1t)
One can also proceed directly, basically deriving the convolution theorem along the way:
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(d) When one differentiates v(t), one has to take the derivative with respect to the upper integration limit,
which means evaluating the integrand at ¢’ = ¢, and also to take the derivative with respect to the ¢ inside the

integral:
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