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Consider a quantum system with Hamiltonian H. The stationary states are the eigen-
states of H: H|E) = E|E). The state vector |¢(t)) can be written in terms of an arbitrary

basis, {|j)}, as
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where the “original codrdinates” are the amplitudes 7;(t) = (j|1(t)). The state vector can
also be written in terms of the energy eigenbasis as
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where the amplitudes
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are the normal coordinates because they oscillate sinusoidally in time.
The original coordinates are related to the normal coordinates by
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The energy eigenstates are the normal modes; they are related to the basis |j) b
= i)UIE) = a;rlj) .
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The matrix elements a;g give the “shape” of normal mode E in the original basis.

The only difference with what we are doing in linear mechanical systems is that
the variables are real instead of complex and thus obey second-order, linear differential
equations in time, instead of the first-order, linear Schrédinger equation. Once one is past
that difference, the whole thing is identical. If we were to master the bra-ket notation for
the real vector spaces in mechanics, the question of which order to write the indices in
and whether to use a transformation matrix or its transpose would disappear as questions,
since the bra-ket notation takes care of all that without any need for thinking.



