Phys 521 Quantum Mechanics I

Homework Assignment #4 (60 points) Due Tuesday, October 11 (at lecture)

4.6 (10 points) Challenge problem. Consider a free particle of mass m that has position operator \hat{x} and momentum operator \hat{p} . The particle's Hamiltonian is $\hat{H} = \hat{p}^2/2m$. At t = 0the particle's (normalized) wave function is

$$\langle x|\psi(0)\rangle = \psi(x,0) = \sqrt{a}e^{-a|x|}$$
,

where a > 0.

(a) Derive the initial momentum-space wave function $\langle p|\psi(0)\rangle = \bar{\psi}(p,0)$.

(b) Using any technique at your disposal, calculate at t = 0 the following expectation values: $\langle \hat{x} \rangle_0$, $\langle \hat{p} \rangle_0$, $\langle \hat{x}^2 \rangle_0$, $\langle \hat{p}^2 \rangle_0$, and $\langle \hat{x} \hat{p} + \hat{p} \hat{x} \rangle_0$. Derive the uncertainties Δx and Δp .

(c) Using any technique at your disposal, *calculate* at time t the following expectation values: $\langle \hat{x} \rangle_t$, $\langle \hat{p} \rangle_t$, $\langle \hat{x}^2 \rangle_t$, $\langle \hat{p}^2 \rangle_t$, and $\langle \hat{x} \hat{p} + \hat{p} \hat{x} \rangle_t$.

You might find the following integrals useful:

$$\int_0^\infty du \, u^n e^{-u} = n! \qquad \qquad \int_{-\infty}^\infty du \, \frac{u^2}{(1+u^2)^2} = \frac{\pi}{2}$$