Phys 521 Quantum Mechanics I

Homework Assignment #5 (40 points)

Due Tuesday, November 1 (at lecture)

5.4 (10 points) Challenge problem (b). Classical generalized force on a harmonic oscillator. II. Consider a harmonic oscillator that is subjected to a classical generalized force f(t), so that its Hamiltonian becomes

$$\hat{H}(t) = \hat{H}_0 + i\hbar[\hat{a}^{\dagger}f(t) - \hat{a}f^*(t)],$$

where $\hat{H}_0 = \hbar \omega \hat{a}^{\dagger} \hat{a}$ is the oscillator's free Hamiltonian (the zero-point energy has been omitted since it has no effect on the dynamics).

(a) Derive the Heisenberg equations of motion for position \hat{x} and momentum \hat{p} and for the creation and annihilation operators \hat{a}^{\dagger} and \hat{a} . Explain why f(t) is called a generalized force, instead of just a force.

(b) Solve the Heisenberg equations of motion for the creation and annihilation operators, with initial conditions at t = 0. Your answer should involve the oscillator complex amplitude,

$$\alpha(t) = \int_0^t dt' f(t') e^{i\omega t'} ,$$

and the phase

$$\delta(t) = \frac{1}{2}i \int_0^t dt' \left(\alpha^* \dot{\alpha} - \alpha \dot{\alpha}^*\right) \,.$$

(c) Suppose that the oscillator is initially in the ground state, i.e., $|\psi(0)\rangle = |\varphi_0\rangle$. At time t, find the expectation values of \hat{a} , \hat{a}^{\dagger} , $\hat{a}^{\dagger}\hat{a}$, and \hat{a}^2 in terms of $\alpha(t)$ and $\delta(t)$. Use these expectation values to find the expectation values and variances of \hat{x} and \hat{p} .