Phys 521 Quantum Mechanics I

Homework Assignment #6 (40 points)

Due Tuesday, November 15 (at lecture)

6.1 (10 points) Challenge problem (a). Consider a two-level system that has unperturbed Hamiltonian

$$H_0 = \frac{1}{2}\hbar\omega(|+\rangle\langle+|-|-\rangle\langle-|) ,$$

where $|+\rangle$ and $|-\rangle$ are the unperturbed energy eigenstates, with corresponding unperturbed energy eigenvalues $\pm \frac{1}{2}\hbar\omega$. Suppose the system is perturbed so that its total Hamiltonian is $H = H_0 + V$; in the $|\pm\rangle$ basis the *nonzero* matrix elements of the perturbation V are

$$\langle +|V|-\rangle = \langle -|V|+\rangle = \hbar\gamma \; ,$$

where γ is real.

(a) Give the matrix representation of H in the basis consisting of $|+\rangle$ and $|-\rangle$.

(b) Find the eigenvalues and eigenvectors of H. Write the eigenvectors in the $|\pm\rangle$ basis.

(c) Let the initial state of the system be $|\psi(0)\rangle = |+\rangle$. Derive the probability $\mathcal{P}(t)$ that the system is in the state $|+\rangle$ at time t.