
Green functions for ordinary linear differential equations with constant coeffi-
cients

Consider the nth order differential operator

L =
dn

dtn
+ an−1

dn−1

dtn−1
+ an−2

dn−2

dtn−2
+ · · ·+ a1

d

dt
+ a0 . (1)

We want to find the general solution to the differential equation

L[x(t)] = f(t) . (2)

where the forcing function f(t) turns on at t = 0, i.e., f(t) = 0 for t ≤ 0. The general
solution will be the sum

x(t) = xh(t) + xp(t) , (3)

where (i) xh(t) is a homogeneous solution, satisfying L[xh(t)] = 0, with arbitrary initial
values for xh(t) and its first n−1 derivatives at t = 0 and (ii) xp(t) is a particular solution,
satisfying L[xh(t)] = f(t), with the initial conditions that xp(t) and its first n−1 derivatives
vanish at t = 0. We will assume that we know how to solve for the general homogeneous
solution xh(t) (and, indeed, this is not hard to do).

There are several good ways to solve the problem, all of which determine the Green
function corresponding to the differential operator L. One way is to Fourier transform,
turning the differential equation into an algebraic equation, which is easily solved. Ensuring
the solution is causal requires moving poles off the real axis in the right way, but even after
doing this, the Fourier method is not well suited to setting initial conditions at t = 0. A
better transform approach is to use the Laplace transform, because it automatically ensures
causality and sets initial conditions at t = 0. To solve the equation directly in the time
domain, without using transform methods, a traditional approach is to regard the forcing
function as a sequence of impulses, but if one works directly with δ-function impulses, one
has to deal with delicate questions of ensuring causality. To avoid these delicate questions,
we’ll follow yet a different path, that of writing the forcing function as a sum of steps.

We begin by finding the solution h(t) for a constant force of unit strength; i.e., we are
looking for the solution h(t) of

L[h(t)] = 1 for t > 0, (4)

with initial conditions that h(t) and its first n− 1 derivatives vanish at t = 0, i.e.,

dkh(t)

dtk

∣∣∣∣
t=0

= 0 , k = 0, 1, . . . , n− 1. (5)

Evaluating the differential equation (4) at t = 0 then tells us that dnh(t)/dtn|t=0 = 1.
Notice that we have

L[h(t)− 1/a0] = 0 for t > 0 , (6)

so h(t)− 1/a0 = xh(t) is the homogeneous solution whose first n− 1 derivatives vanish at
t = 0, but which has initial value xh(0) = −1/a0.
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If we extend h(t) to negative values of t by defining it to be zero there, i.e., h(t) = 0
for t ≤ 0, we can regard it as the solution for a forcing function that turns on to a constant
unit strength at t = 0, i.e.,

L[h(t)] = Θ(t) =

{
0 , t < 0
1 , t > 0

, (7)

Differentiating (7) once with respect to t shows that g(t) = dh/dt is the solution for a δ
impulse at t = 0, i.e.,

L[g(t)] = δ(t) . (8)

For t < 0, g(t) = 0, and for t > 0, g(t) is the homogeneous solution with initial conditions

dkg(t)

dtk

∣∣∣∣
t=0

=
dk+1h(t)

dtk+1

∣∣∣∣
t=0

= δk,n−1 , k = 0, 1, . . . , n− 1. (9)

The solution g(t) for a δ impulse is called the Green function.
Now we’re ready to return to an arbitrary forcing function f(t). We write

f(t) =

∫ t

0

dt′
df(t′)

dt′
=

∫ ∞

0

Θ(t− t′)
df(t′)

dt′
. (10)

In the second form we have written f(t) as an integral of constant forcing functions that
turn on at times t′ > 0. Because of the linearity of the differential equation (2), we can
write the particular solution as

xp(t) =

∫ ∞

0

dt′ h(t− t′)
df(t′)

dt′

=

∫ t

0

dt′ h(t− t′)
df(t′)

dt′

= h(t− t′)f(t′)

∣∣∣∣t′=t

t′=0

−
∫ t

0

dt′
dh(t− t′)

dt′
f(t′)

=

∫ t

0

g(t− t′)f(t′) ,

(11)

where the last form follows from the vanishing of the boundary terms and that

−dh(t− t′)

dt′
=

dh(t− t′)

dt
= g(t− t′) . (12)

It is clear from the first form of (11) that xp(t) satisfies (2). To check that xp(t) has
the right initial values, we note that in the last form of (11), when we take derivatives,
we have to do two things: differentiate with respect to the upper limit of integration, and
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differentiate the integrand, which is an explicit function of t. Given the initial conditions (9)
for g(t), however, it is easy to see that first n− 1 derivatives of xp(t) are given by

dkxp(t)

dtk
=

∫ t

0

dt′
dkg(t− t′)

dtk
f(t′) , k = 0, . . . , n− 1, (13)

and thus that
dkx(t)

dtk

∣∣∣∣
t=0

= 0 , k = 0, . . . , n− 1 . (14)

Summary. To find the particular solution xp(t), all you have to do is to find the
Green function g(t), which is the homogeneous solution with initial conditions (9), and
then do the integral

xp(t) =

∫ t

0

g(t− t′)f(t′) . (15)

Now let’s do two examples. For the first-order differential equation

dx

dt
+ iωx = f(t) , (16)

we have

h(t) =
1

iω
(1− e−iωt) , g(t) = e−iωt , xp(t) =

∫ t

0

dt′ e−iω(t−t′)f(t′) . (17)

For the second-order differential equation

d2x

dt
+ ω2x = f(t) , (18)

we have

h(t) =
1

ω2
(1− cosωt) , g(t) =

1

ω
sinωt , xp(t) =

1

ω

∫ t

0

dt′ sinω(t− t′)f(t′) . (19)
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