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Consider two quantum systems, A and B. System A is described by a dA-dimensional
Hilbert space HA, and system B is described by a dB-dimensional Hilbert space HB .
What we want to do is to construct the Hilbert space that describes the composite system
consisting of both A and B.

The composite space certainly must have a way of describing the situation where A
has the (pure) state |ψ〉 and B has the (pure) state |φ〉. We denote the corresponding
composite state by |ψ〉 ⊗ |φ〉, and we call such a state a product state. For the present, the
product symbol ⊗, read as “o-times,” is simply a way of separating the state of A from the
state of B, with the state of A on the left and the state of B on the right. More generally,
of course, we can apply this product to unnormalized vectors from A and B, and we do
so freely in what follows without paying much attention to whether we are talking about
normalized or unnormalized vectors. The set of all product states is not a vector space;
it is the Cartesian product of HA and HB , i.e., the set of all ordered pairs consisting of a
vector from HA and a vector from HB .

Now suppose we write |ψ〉 as a superposition of two other states of A, i.e., |ψ〉 =
a|χ〉+ b|ξ〉. It is certainly reasonable to write

|ψ〉 ⊗ |φ〉 = (a|χ〉+ b|ξ〉)⊗ |φ〉 = a|χ〉 ⊗ |φ〉+ b|ξ〉 ⊗ |φ〉 , (1)

since all this is saying is that superposing two states of A and then saying B has state
|φ〉 is the same as saying B has state |φ〉 and then superposing the corresponding two
composite states. This innocuous assumption, along with the same considerations for B,
already says, however, that the o-times product is bilinear in both its inputs.

We can see that the Cartesian product is not a vector space by noting that a linear
combination of two product vectors,

a|ψ〉 ⊗ |φ〉+ b|χ〉 ⊗ |ξ〉 , (2)

is not generally a product vector. It being a general principle of quantum mechanics
that systems are described by complex vector spaces, we now assume, in accordance with
this principle, that the appropriate state space for the composite system is not just the
Cartesian product, but rather the entire vector space spanned by the product states. This
is a fateful assumption, because it leads to the phenomenon of quantum entanglement,
entangled pure states being precisely the composite states that are not product states.
The vector space spanned by the product states, denoted by HA ⊗HB = HAB , is called
the tensor product of HA and HB . The o-times symbol is now read as “tensor product.”
The inner product on HAB is defined by defining the inner product of two product vectors
as

(〈ψ| ⊗ 〈φ|)(|χ〉 ⊗ |ξ〉) = 〈ψ|χ〉〈φ|ξ〉 (3)

and extending this definition to all vectors in HAB by the complex bilinearity of the inner
product.
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We often use capital letters to denote vectors in the tensor-product space, as in |Ψ〉,
and when confusion threatens, we use subscripts (or superscripts) to indicate to which
system a vector belongs, as in |ψA〉 for a vector in HA or |ΨAB〉 for a vector in HAB .

Any vector |Ψ〉 in HAB can be written as a linear combination of product vectors, all
the vectors in the products can be expanded in orthonormal bases, |ej〉, j = 1, . . . , dA, for
A and |fk〉, k = 1, . . . , dB , for B, and the bilinearity of the tensor product can then be
used to write |Ψ〉 as a linear combination of the orthonormal product vectors |ej〉 ⊗ |fk〉,
showing that these product vectors are a basis for HAB . The number of these vectors is
dAdB , which means that the dimension of the tensor-product space is dAdB . We often
leave out the inner-product symbol in these basis vectors, writing, in increasing order of
omitting redundancies, such things as

|ej〉 ⊗ |fk〉 = |ej〉|fk〉 = |ej , fk〉 = |j, k〉 = |jk〉 . (4)

The expansion of an arbitrary vector in HAB looks like

|Ψ〉 =
∑

j,k

|ej , fk〉〈ej , fk|Ψ〉 =
∑

j,k

cjk|ej , fk〉 =
∑

j,k

cjk|ej〉 ⊗ |fk〉 . (5)

The expansion coefficients cjk = 〈ej , fk|Ψ〉 can be written as a matrix, or in accord with
our usual notation for representations of vectors, they can be written as a column vector:

|Ψ〉 →




c11
...

c1dB

c21
...

c2dB

cdA1

...
cdAdB




=




c1
...

cdA


 . (6)

In the second form, we introduce dB-dimensional column vectors

cj =




cj1

...
cjdB


 , (7)

thus showing how we can think of a vector in the tensor-product space as a dA-dimensional
vector whose components are themselves dB-dimensional vectors. One should recognize
that Eqs. (6) and (7) are simply the column-vector version of the following way of writing
|Ψ〉:

|Ψ〉 =
∑

j

|ej〉 ⊗
(∑

k

cjk|fk〉
)

. (8)
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The expansion coefficients of a product vector |ψ〉 ⊗ |φ〉 are the outer product of the
expansion coefficients for |ψ〉 =

∑
j ak|ek〉 and |φ〉 =

∑
k bk|fk〉, i.e.,

cjk = 〈ej , fk|(|ψ〉 ⊗ |φ〉) = 〈ej |ψ〉〈fk|φ〉 = ajbk , (9)

which means that the column vectors in Eq. (7) are A-dependent multiples of the column
vector for |φ〉:

cj = aj




b1
...

bdB


 . (10)

Once we have the tensor product under our belt, we realize that we can make sense
of what might be called the “partial inner product,” 〈φB |ΨAB〉. This is defined to be the
ket in HA whose inner product with any vector |ψA〉 in HA is the same as the complete
inner product of |ψA〉 ⊗ |φB〉 with |ΨAB〉, i.e.,

〈ψA|
(〈φB |ΨAB〉

)
= (〈ψA| ⊗ 〈φB |)|ΨAB〉 . (11)

Working this out explicitly in the product basis |ej , fk〉, we get

〈φB |ΨAB〉 =
∑

j,k

cjk|ej〉〈φB |fk〉 =
∑

j

|ej〉
(∑

k

b∗kcjk

)
. (12)

The final form on the right makes clear that the partial inner product is the inner product
of bk with the second (system B) index of cjk, with the first (system A) index left over to
form a vector for system A. The partial inner product with a product state is obviously
〈ξB |(|ψA〉 ⊗ |φB〉) = |ψA〉〈ξB |φB〉. We can, of course, define in the same way a partial
inner product 〈ψA|ΨAB〉. It is worth noting that the partial inner product 〈ej |ΨAB〉 =∑

k cjk|fk〉 is the vector in HB that is represented by the column vector cj . Thus another
way of thinking of the partial inner product is that it is a way of generating the column
vectors cj .

We’re now ready to go on to operators acting on the tensor-product space. The basic
operators are outer products

|ψ〉 ⊗ |φ〉〈χ| ⊗ 〈ξ| = |ψ〉〈χ| ⊗ |φ〉〈ξ| . (13)

The first form is in standard outer-product notation in the tensor-product space; we know
how to handle this form because we have defined the inner product on the tensor-product
space. The second form re-arranges the outer product as a tensor product of outer-product
operators for A and B. This innocuous re-arrangement defines the tensor product of
operators. Equation (13) defines the definition of a tensor product of outer products; the
definition is extended to the outer product of any two operators by assuming that the
operator tensor product is bilinear, i.e.,

A⊗B =
(∑

j,l

Ajl|ej〉〈el|
)
⊗

(∑

k,m

Bkm|fk〉〈fm|
)

=
∑

j,k,l,m

AjlBkm|ej〉〈el| ⊗ |fk〉〈fm|

=
∑

j,k,l,m

AjlBkm|ej , fk〉〈el, fm| .

(14)
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Once we’re working in the tensor-product space, we really should write an operator
A acting on HA as A⊗ IB , i.e.,

A⊗ IB =
∑

j,l,k

Ajl|ej〉〈el| ⊗ |fk〉〈fk| =
∑

j,l,k

Ajl|ej , fk〉〈el, fk| . (15)

Likewise, an operator B acting on HB should be written as IA ⊗ B. We usually ignore
this nicety unless doing so causes confusion. It is easy to verify from Eq. (14) that (A1 ⊗
B1)(A2 ⊗B2) = A1A2 ⊗B1B2.

An arbitrary operator O acting on the tensor-product space can be expanded as

O =
∑

j,l,k,m

Ojk,lm|ej , fk〉〈el, fm| =
∑

j,k,l,m

Ojk,lm|ej〉〈el| ⊗ |fk〉〈fm| . (16)

Using our usual notation for representing an operator as a matrix, we write

O →




O11,11 · · · O11,1dB
· · · O11,dA1 · · · O11,dAdB

...
. . .

... · · · ...
. . .

...
O1dB ,11 · · · O1dB ,1dB · · · O1dB ,dA1 · · · O1dB ,dAdB

...
...

...
...

...
...

...
OdA1,11 · · · OdA1,1dB · · · OdA1,dA1 · · · OdA1,dAdB

...
. . .

... · · · ...
. . .

...
OdAdB ,11 · · · OdAdB ,1dB

· · · OdAdB ,dA1 · · · OdAdB ,dAdB




=




O11 · · · O1dA

...
. . .

...
OdA1 · · · OdAdA


 .

(17)

In the second form, we introduce (dB × dB)-dimensional matrices

Ojl =




Oj1,l1 · · · Oj1,ldB

...
. . .

...
OjdB ,l1 · · · OjdB ,ldB


 , (18)

thus showing how we can think of a matrix in the tensor-product space as a (dA × dA)-
dimensional matrix whose components are themselves (dB×dB)-dimensional matrices. One
should recognize that Eqs. (17) and (18) are simply the matrix version of the following
way of writing O:

O =
∑

j,l

|ej〉〈el| ⊗
(∑

k,m

Ojk,lm|fk〉〈fm|
)

. (19)

This realization should cure one of wanting to write the explicit matrix forms ever again,
but it is useful to able to look at Eq. (19) and to be able to reconstruct the matrices (17)
and (18) in your head.
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Using the partial inner product, we can go on to define a “partial matrix element” of
a composite operator O,

〈φB |O|ξB〉 =
∑

j,l

|ej〉〈el|
(∑

k,m

Ojk,lm〈φB |fk〉〈fm|ξB〉
)

, (20)

which is an operator acting on system A. It should be obvious that the partial matrix
element of a tensor product is 〈φB |A ⊗ B|ξB〉 = A〈φB |B|ξB〉. Nearly as obvious is that
〈φB |(A ⊗ IB)O|ξB〉 = A〈φB |O|ξB〉 and 〈φB |O(A ⊗ IB)|ξB〉 = 〈φB |O|ξB〉A. In the same
way, we can, of course, define a partial matrix element 〈ψA|O|χA〉. It is worth noting that

〈ej |O|el〉 =
∑

k,m

Ojk,lm|fk〉〈fm| (21)

is the operator that has the matrix representation (18).
We have all the ingredients now to define the partial trace of a composite operator O.

The partial trace of O with respect to system B is an operator on system A:

trB(O) =
∑

k

〈fk|O|fk〉 =
∑

j,l

Ojk,lk|ej〉〈el| . (22)

The partial trace on B is a linear map from joint operators to operators on A. The partial
trace of O with respect to A is similarly defined as

trA(O) =
∑

j

〈ej |O|ej〉 =
∑

k,m

Ojk,jm|fk〉〈fm| . (23)

Notice that the complete trace can be obtained by doing two partial traces:

tr(O) =
∑

j,k

Ojk,jk = trA

(
trB(O)

)
= trB

(
trA(O)

)
. (24)

In the same way as the complete trace, the partial trace is linear and independent of the
orthonormal basis used to calculate it. It should be obvious that trB(A ⊗ B) = Atr(B).
Nearly as obvious is that trB

(
(A⊗ IB)O

)
= AtrB(O) and trB

(
O(A⊗ IB)

)
= trB(O)A.

It is not generally true that trB(NO) = trB(ON), as one discovers by trying to
duplicate the proof for the complete trace:

trB(NO) =
∑

k

〈fk|NO|fk〉 =
∑

k,m

〈fk|N |fm〉〈fm|O|fk〉 . (25)

When dealing with the complete trace, one can switch the order of the matrix elements,
since they are complex numbers, thus changing the order of the product. In contrast,
the partial matrix elements in Eq. (25) are operators on system A, and these operators
generally don’t commute. It is true, however, that

trB

(
(IA ⊗B)O

)
= trB

(
O(IA ⊗B)

)
, (26)
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because in this case the partial matrix element 〈fk|IA⊗B|fm〉 = IA〈fk|B|fm〉 is a multiple
of the unit operator, so it does commute with 〈fm|O|fk〉. In the same way, we can also
show that

trB

(
O(IA ⊗ |φB〉〈ξB |)

)
=

∑

k,m

〈fk|O|fm〉〈fm|φB〉〈ξB |fk〉

=
∑

k,m

〈ξB |fk〉〈fk|O|fm〉〈fm|φB〉

= 〈ξB |O|φB〉 ,

(27)

so that the partial trace with respect to B does turn an outer product on B into a par-
tial matrix element with respect to B. The main thing to be alert to in performing
these manipulations is which objects are operators and which are complex numbers—in
Eq. (27), 〈fk|O|fm〉 is an operator on system A, whereas 〈fm|φB〉 and 〈ξB |fk〉 are com-
plex numbers—since we use the same notation that, in the case of a single system, made
everything a complex number.

We use the partial trace for a lot of things—we really couldn’t do without it—but
it receives its main justification from the notion of a marginal density operator for a
subsystem of a composite system. If the composite system has the density operator ρAB ,
a measurement in the basis |ej〉 on system A yields result j with probability

pj =
∑

k

pjk =
∑

k

〈ej , fk|ρAB |ej , fk〉 , (28)

In writing this expression, we imagine that in addition to the measurement in the basis
|ej〉 on system A, a measurement in an arbitrary basis |fk〉 is made on system B. To find
the probability for j, we sum the joint probabilities over the results of the measurement
on B, in accordance with the rules for classical probabilities The probability for result j
can be put in the form

pj = 〈ej |
( ∑

k

〈fk|ρAB |fk〉
︸ ︷︷ ︸

= trB(ρAB) = ρA

)
|ej〉 = 〈ej |ρA|ej〉 . (29)

where ρA = trB(ρAB), obtained by taking the partial trace of ρAB with respect to B, is
called the marginal density operator of system A. We use this terminology because as far
as measurements on A are concerned, all probabilities are calculated as though ρA were
the density operator of system A.

6



We can put pj in other useful forms through the following manipulations:

pj =
∑

k

tr
(
ρAB |ej , fk〉〈ej , fk|

)

=
∑

k

tr
(
ρAB |ej〉〈ej | ⊗ |fk〉〈fk|

)

= tr

(
ρAB |ej〉〈ej | ⊗

(∑

k

|fk〉〈fk|
))

= tr
(
ρAB(Pj ⊗ IB)

)

= trA

(
trB

(
ρAB(Pj ⊗ IB)

))

= trA

(
trB(ρAB)Pj

)

= trA(ρAPj) .

(30)

In the last form, we get back to Eq. (29). In the middle, we find that when we are working
with the composite state ρAB , the projection operator that goes with a particular result
on A is Pj ⊗ IB = |ej〉〈ej | ⊗ IB , which is a multi-dimensional projector with rank dB ,
corresponding to the fact that result j is degenerate, with dB different possibilities for
system B.

Let’s put this machinery into action in a particular case. Suppose we have two qubits
in the pure state

|ΨAB〉 = cos θ|00〉+ sin θ|11〉 . (31)

The corresponding composite density operator is

ρAB = |ΨAB〉〈ΨAB | = cos2θ|00〉〈00|+sin2θ|11〉〈11|+cos θ sin θ
(|00〉〈11|+ |11〉〈00|) . (32)

A measurement of ZA = |0〉〈0| − |1〉〈1| on A yields +1 with probability

p+1 = tr
(
ρABPez ⊗ IB

)

= 〈ΨAB |Pez ⊗ IB |ΨAB〉
= 〈ΨAB |

(|0〉〈0| ⊗ (|0〉〈0|+ |1〉〈1|))|ΨAB〉
= 〈ΨAB |(|00〉〈00|+ |01〉〈01|)|ΨAB〉
= cos2θ .

(33)

We can get the same result by calculating the marginal density operator

ρA = trB(ρAB)

= cos2θ trB

(|00〉〈00|) + sin2θ trB

(|11〉〈11|)

+ cos θ sin θ
(
trB

(|00〉〈11|) + trB

(|11〉〈00|)
)

= cos2θ |0〉〈0|〈0|0〉+ sin2θ |1〉〈1|〈1|1〉 cos θ sin θ
(|0〉〈1|〈1|0〉+ |1〉〈0|〈0|1〉)

= cos2θ |0〉〈0|+ sin2θ |1〉〈1| ,

(34)

from which we calculate

p+1 = trA

(
ρAPez

)
= trA

(
ρA|0〉〈0|

)
= 〈0|(cos2θ |0〉〈0|+ sin2θ |1〉〈1|)|0〉 = cos2θ . (35)
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