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much time as you want to complete the exam, as long as it is turned in by the deadline.
Your completed exam must be solely your own work; do not consult anyone else in doing
the exam.

Do your work on sheets of paper separate from the exam. The solution you hand in
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Phys 522 Quantum Mechanics II Spring 2010

Exam #2 (100 points)

Problem 1 (100 points) Consider an isotropic two-dimensional harmonic oscillator
with mass m and frequency ω, i.e., a particle with Hamiltonian
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are the annihilation operators for the x and y components of the oscillator’s motion. The
−h̄ω subtracts the zero-point energy of the two degrees of freedom so that the vacuum
state of the oscillator has zero energy.

It is not hard to work out that the z component of the system’s angular momentum
is given by

Lz = XPy − Y Px = ih̄(a†yax − a†xay) = h̄(a†+a+ − a†−a−) ,

where
a± =

1√
2
(ax ∓ iay)

are annihilation operators for oscillator modes that describe right-handed and left-handed
rotation about the z axis. The oscillator Hamiltonian can be written in terms of these new
operators as

Hosc = h̄ω(a†+a+ + a†−a−) .

The energy eigenstates can be written as |nx, ny〉, where nx and ny are the number
of quanta in the x and y oscillations, or as |n+, n−〉, where n+ and n− are the number of
quanta undergoing right-handed and left-handed rotations about the z axis. These states
satisfy

H|nx, ny〉 = h̄ω(nx + ny)|nx, ny〉 = h̄ωN |nx, ny〉 ,

H|n+, n−〉 = h̄ω(n+ + n−)|n+, n−〉 = h̄ωN |n+, n−〉 .

Except for the vacuum state, these states have degeneracies since the energy depends only
on the total number of quanta, N = nx + ny = n+ + n−.

The position-representation wave functions of the states |nx, ny〉 are the familiar Her-
mite Gaussians, and the wave functions of the states |n+, n−〉 are Laguerre Gaussians.
If you find yourself needing these position-representation wave functions, you’re headed
down the wrong path. You may write answers in terms of either set of energy eigenstates.

Now suppose the particle has a charge q. We are going to consider two different
perturbations in this problem. The first is an electric field of strength E along the y axis,
for which the potential energy is

We = −qEY ,



and the second is a magnetic field of strength B along the z direction, for which the
potential energy (in the magnetic-dipole approximation) is

Wm = −MzB = − qB
2m

Lz = −ΩLz ,

where Mz = qLz/2m is the z component of the particle’s magnetic-dipole moment and
Ω = qB/2m is a frequency, called a Larmor frequency, that expresses the strength of the
coupling to the magnetic field.

In case you’re wondering whether this problem has any practical use, I can assure you
that the situation it describes is very close to what happens in a trap for charged particles
called a Penning trap.

(a) (20 points) Suppose that only the electric field is turned on, making the total
Hamiltonian H = Hosc + We. Use the fact that the electric field displaces the equilibrium
position to find the exact energy eigenstates in terms of a position-translation operator
Ta = exp(−iP · a/h̄) and the unperturbed eigenstates and to find the corresponding exact
energy eigenvalues.

(b) (20 points) Suppose that only the magnetic field is turned on, making the total
Hamiltonian H = Hosc + Wm. Find the exact energy eigenstates and the corresponding
exact energy eigenvalues.

For the remainder of the problem, suppose that both the electric and magnetic fields
are turned on, making the total Hamiltonian

H = Hosc + We + Wm .

We assume that Ω/ω is irrational; this should allow you to draw a firm conclusion about
the degeneracy of the eigenvalues found in part (b).

(c) (30 points) Treating We as a perturbation on top of the Hamiltonian H0 = Hosc +
Wm, find the energy eigenvalues to second order in the perturbation We.

(d) (30 points) Treating Wm as a perturbation on top of the Hamiltonian H0 =
Hosc + We, find the energy eigenvalues to first order in the perturbation Wm.

This problem is actually a scam. Since the total Hamiltonian, including both the
electric and magnetic fields, is linear or quadratic in creation and annihilation operators
(or in position and momentum variables), the whole problem can be solved exactly. If you
really want to be sure your answers to (c) and (d) are right, you can find the exact solution
and compare.



Useful facts
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