
Phys 522 Quantum Mechanics II Spring 2010

Homework Assignment #2 Due Thursday, February 11
(60 points) (at lecture)

2.6 (10 points) Challenge problem.
Schwinger representation. Consider N = 2J spin-1/2 particles. The total angular

momentum is

J =
N∑

l=1

Sl =
1
2
h̄

N∑

l=1

σσσσl .

This collection of particles has total-angular-momentum subspaces of all integral (N even)
or half-integral (N odd) values up to J . If we let nJj denote the number of subspaces of
angular momentum j, the rules for adding angular momentum give the recursion relation

nJ+1/2,j = nJ,j−1/2 + nJ,j+1/2 .

This recursion relation is sufficiently like the recursion relation satisfied by binomial coef-
ficients, but with a boundary at j = 0, that it is not hard to guess (and then to verify) the
solution:

nJj =
(

2J − 1
J + j − 1

)
−

(
2J − 1

J − j − 2

)
=

(2J − 1)!
(J + j − 1)!(J − j)!

− (2J − 1)!
(J − j − 2)!(J + j + 1)!

.

You can ponder how to get this result if you wish, but in this problem we’re interested
in only one of these subspaces, the single subspace of maximum total angular momentum
j = J = N/2.

(a) Show that

|JM〉 =

√
n+! n−!

N !

∑
ε1,...εN

M=(n+−n−)/2

|ε1, . . . εN 〉 ≡ |n+, n−〉 ,

where n+ is the number of particles with spin up and n− is the number with spin down.
Since N = n+ + n−, the sum is restricted to those states that have (n+ − n−)/2 =
n+ − N/2 = N/2 − n− = M . (Hint: This is easy. If you’re making it hard, you need to
think some more.)

The states |JM〉 ≡ |n+, n−〉 are all completely symmetric under interchange of parti-
cles. Hence all the states in this angular-momentum subspace are symmetric under particle
interchange, and the subspace itself is called the symmetric subspace of the N particles.
The main point here is that we can model any angular-momentum subspace J as the
symmetric subspace of N = 2J spin-1/2 particles.

In a subspace of angular momentum J , a rotation Ru(α) is represented by the matrix

D
(J)
M ′M (R) = 〈JM ′|Ru(α)|JM〉 = 〈JM ′|e−iu·Jα/h̄|JM〉 .



For spin-1/2, we adopt a special notation for the rotation matrix:

D
(1/2)
M ′M (R) = 〈 12 ,M ′ = ε′/2|e−iu·Sα/h̄| 12 ,M = ε/2〉 = 〈ε′|e−iu·σσσσα/2|ε〉 ≡ Dε′ε(R) .

(b) Find the matrix Dε′ε for an arbitrary rotation R.

(c) Find the matrix D
(J)
M ′M for a rotation by π about the y axis.

(d) For an arbitrary rotation, find the matrix D
(1)
M ′M in terms of the corresponding

spin-1/2 rotation matrix. It should be clear how you could extend this result to find the
rotation matrix for arbitrary J in terms of the corresponding matrix for spin-1/2.

Now we proceed to the Schwinger representation, which is built on a formal connection
between angular-momentum operators and bosons with two possible states. Typically the
Schwinger representation is developed in terms of photon polarization, where the two
states are a photon’s two orthogonal polarization states, but it works the same for any two
bosonic modes.

A photon is a boson with helicity (spin along the direction of propagation) equal to ±h̄.
Photons with positive helicity (right-handed circular polarization) are created by a creation
operator a†+z, and photons with negative helicity (left-handed circular polarization) are
created by a creation operator a†−z. The reason for the z in the subscripts becomes apparent
shortly. These creation operators and the corresponding annihilation operators satisfy the
canonical bosonic (harmonic-oscillator) commutation relations:

[aεz, aε′z] = 0, [aεz, a
†
ε′z] = δεε′ .

The operator for the total number of photons is

N = a†+za+z + a†−za−z .

A photon can also be linearly polarized. Photons with orthogonal linear polarizations
can be created by creation operators a†+x and a†−x; the circular-polarization operators are
given by

a†±z =
1√
2
(a†+x ± ia†−x) ⇐⇒

a†+x =
1√
2
(a†+z + a†−z)

a†−x = − i√
2
(a†+z − a†−z)

,

i.e., equal linear combinations of the two linear polarizations with a π/2 phase shift to
give circular polarization. To complete the picture, we can introduce operators for the two
orthogonal linear polarizations that lie at 45◦ to the +x and −x polarizations:

a†±y =
1√
2
(±a†+x + a†−x) ⇐⇒

a†+y =
1√
2
(a†+ze

−iπ/4 + a†−ze
iπ/4)

a†−y = − i√
2
(a†+ze

−iπ/4 − a†−ze
iπ/4)

.



The use of ±x, ±y, and ±z to label these three polarizations corresponds to using the
Poincaré (Bloch) sphere to describe photon polarization. The x, y, and z directions are
directions on the Poincaré sphere and are not directions in ordinary three-dimensional
space.

We now introduce the operators

Jz =
1
2
h̄(a†+za+z − a†−za−z) ,

Jx =
1
2
h̄(a†+xa+x − a†−xa−x) =

1
2
h̄(a†+za−z + a†−za+z) ,

Jy =
1
2
h̄(a†+ya+y − a†−ya−y) = − i

2
h̄(a†+za−z − a†−za+z) .

We only need the ±z operators in parts (e) and (f), so we drop the z in subscripts in those
parts.

(e) Show that J2
x + J2

y + J2
z = h̄2(N/2 + 1)N/2 and that the three operators Jx, Jy,

and Jz satisfy the angular-momentum commutation relations. Since a photon has spin-1,
2Jz is, in fact, the total angular momentum along the propagation direction, but aside
from this, the operators Jx, Jy, and Jz have no connection to the angular momentum in
the photon field. What we exploit here is the purely formal connection of these operators
to angular momentum.

The state

|n+, n−〉 =
(a†+)n+

√
n+!

(a†−)n−
√

n−!
|0, 0〉

has n+ photons with positive helicity and n− photons with negative helicity.
(f) Show that

|n+, n−〉 = |J = (n+ + n−)/2,M = (n+ − n−)/2〉 .

What you have shown is that the space of angular momentum J can be realized as the
Hilbert space for the polarization of N = 2J photons.

What we get from the Schwinger representation is that we can apply the algebra of
creation and annihilation operators to angular-momentum problems.

(g) Show that
R†u(α)a†εRu(α) =

∑

ε′
D∗

εε′a
†
ε′ .

(h) A quarter-wave plate is a birefringent piece of material in which two orthogonal
linear polarizations, say +x and −x, accumulate a π/2 relative phase shift. What unitary
operator describes this transformation? How does a quarter-wave plate interchange linearly
polarized and circularly polarized light? A half-wave plate is twice as thick so that the
same two linear polarizations accumulate a π relative phase shift. What unitary operator
describes this transformation?


