














Appendix to Lecture 9

1. A linear operator A is specified by giving the “sandwiches” 〈ψ|A|ψ〉 for all normalized
vectors |ψ〉.

Proof: A linear operator A is specified by its matrix elements, Ajk ≡ 〈ej |A|ek〉, in an
orthonormal basis |ej〉, i.e.,

A =
∑

j,k

Ajk|ej〉〈ek| . (1)

Clearly the diagonal elements, Ajj , are sandwiches. For the off-diagonal element Ajk,
define the normalized vectors |fjk〉 ≡ (|ej〉+ |ek〉)/

√
2 and |gjk〉 ≡ (|ej〉+ i|ek〉)/

√
2. This

gives

〈fjk|A|fjk〉 =
1
2
(Ajj + Akk + Ajk + Akj) ,

〈gjk|A|gjk〉 =
1
2
(Ajj + Akk + iAjk − iAkj) ,

so we have

Ajk = 〈fjk|A|fjk〉 − i〈gjk|A|gjk〉 − 1− i

2
(〈ej |A|ej〉+ 〈ek|A|ek〉

)
;

i.e., the off-diagonal elements are also given by sandwiches.

Note: This property does not hold in a real vector space. In a real vector space, an
antisymmetric operator is one that satisfies 〈ej |A|ek〉 = −〈ek|A|ej〉 in some orthonormal
basis. This implies that 〈φ|A|ψ〉 = −〈ψ|A|φ〉 for all vectors |ψ〉 and |φ〉. An antisymmetric
operator thus has all sandwiches equal to zero. This means that in the proof above, we had
to use complex numbers in an essential way, and it is not hard to see where this occurred.

2. A vector |ψ〉 is specified up to an overall phase by giving |〈φ|ψ〉| for all normalized
vectors |φ〉.

Proof: A vector is specified by its amplitudes in an orthonormal basis, i.e.,

|ψ〉 =
∑

j

cj |ej〉 .

The absolute values of the amplitudes are given directly by aj ≡ |cj | = |〈ej |ψ〉|, so the
only question is how to specify the phase in cj = aje

iαj whenever aj 6= 0. If all the aj ’s are
zero, then |ψ〉 = 0. Otherwise, at least one of the cj ’s is nonzero; relabel the basis vectors,
if necessary, to make c1 nonzero. Make c1 = a1 real by using the overall phase freedom to
rephase |ψ〉.

Now consider the vectors |fj,±〉 ≡ (|e1〉 ± |ej〉)/
√

2 for j 6= 1. We have

|〈fj,±|ψ〉| = 1√
2

∣∣a1 ± aje
iαj

∣∣ =

√
a2
1 + a2

j ± 2a1aj cosαj

2
.
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Whenever aj 6= 0, these two quantities determine αj , so we’re finished.

Note: The method of proof makes clear that this property also holds in a real vector
space, where the phases can only be ±1.

3. A linear operator A is specified up to an overall phase by giving |〈φ|A|ψ〉| for all
normalized vectors |φ〉 and |ψ〉.

Proof: A linear operator is specified by its matrix elements in an orthonormal basis,
as in Eq. (1) above. The absolute values of the matrix elements are given directly by
aj[ ≡ |Ajk| = |〈ej |A|ek〉|, so the only question is how to specify the phase in Ajl = ajkeiαjk

whenever ajk 6= 0. If all the ajk’s are zero, then A = 0. Otherwise, at least one of the
Ajk’s is nonzero; relabel the basis vectors, if necessary, to make at least one element of the
first row, say, A1K nonzero. Make A1K = a1K real (α1K = 0 by using the overall phase
freedom to rephase A.

Now consider the vectors |fj,±〉 ≡ (|e1〉 ± |ej〉)/
√

2 for j 6= 1 and |gk,±〉 ≡ (|eK〉 ±
|ek〉)/

√
2 for k 6= K. We have

|〈fj,±|A|ek〉| = 1√
2

∣∣a1keiα1k ± ajkeiαjk
∣∣ =

1√
2

∣∣a1k ± ajkei(αjk−α1k)
∣∣ ,

|〈ej |A|gk,±〉| = 1√
2

∣∣ajKeiαjK ± ajkeiαjk
∣∣ =

1√
2

∣∣ajK ± ajkei(αjk−αjK)
∣∣ .

In the upper equation, first choose k = K, so that α1K = 0; this equation then determines
αjK for j 6= 1. In the lower equation, first choose j = 1, so that α1K = 0; this equation
then determines α1k for k 6= K. This done, either equation determines αjk for j 6= 1 and
k 6= K, so we’re finished.

Note: Again the method of proof makes it clear that this property holds in real vector
spaces.

4. Wigner’s theorem. Let M : |ψ〉 → M(|ψ〉) ≡ |ψ′〉 be a map from normalized
vectors to normalized vectors that satisfies

|〈φ′|ψ′〉| = |〈φ|ψ〉|

for all normalized vectors |ψ〉 and |φ〉. There exists a unitary or antiunitary map U (defined
on all of Hilbert space) that agrees with M up to a phase, i.e., U |ψ〉 = eiα(|ψ〉)M(|ψ〉).

Proof: Proof in Messiah-II XV.2, but I would like to make it more convincing and
simpler.
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