Phys 571 Quantum Computation

Homework Problem 3.2 (10 points)

Due Tuesday, October 27 (at lecture)

3.2 Qudit phase space. For a *D*-dimensional quantum system—a *qudit*—we have defined "position" eigenstates $|q_j\rangle$ and "momentum" eigenstates $|p_k\rangle$, which are related by discrete Fourier transforms,

$$\begin{aligned} |p_k\rangle &= \frac{1}{\sqrt{D}} \sum_{j=1}^{D-1} e^{ip_k q_j/\hbar} |q_j\rangle = \frac{1}{\sqrt{D}} \sum_{j=1}^{D-1} e^{2\pi i j k/D} |q_j\rangle ,\\ |q_j\rangle &= \frac{1}{\sqrt{D}} \sum_{k=1}^{D-1} e^{-ip_k q_j/\hbar} |p_k\rangle = \frac{1}{\sqrt{D}} \sum_{k=1}^{D-1} e^{-2\pi i j k/D} |p_k\rangle ,\end{aligned}$$

where $\hbar = 1/2\pi D$. Now let's take the next step and define Hermitian "position" and "momentum" operators, q and p, in the obvious way:

$$q|q_j\rangle = q_j|q_j\rangle$$
 and $p|p_k\rangle = p_k|p_k\rangle$

We can also define unitary operators that displace the position and momentum eigenstates by one unit, i.e., by 1/D:

$$X \equiv e^{-ip/\hbar D} = e^{-2\pi i p}$$
 and $Z \equiv e^{iq/\hbar D} = e^{2\pi i q}$

The eigenstates of these operators are the momentum and position and eigenstates:

$$X|p_k\rangle = e^{-2\pi i k/D}|p_k\rangle$$
 and $Z|q_j\rangle = e^{2\pi i j/D}|q_j\rangle$.

(a) Show that X and Z displace the position and momentum eigenstates by one unit, i.e., $X|q_j\rangle = |q_{j+1}\rangle$ and $Z|p_k\rangle = |p_{k+1}\rangle$.

(b) Show that $ZX = e^{2\pi i/D}XZ$.

The operator $e^{-i\pi jk/D}Z^kX^j = e^{i\pi jk/D}X^jZ^k$ is a (symmetric) "displacement operator" that displaces by j units in position and k units in momentum. The rest of the problem concentrates on the operator $Y \equiv e^{-i\pi/D}ZX = e^{i\pi/D}XZ$ that displaces by one unit in position and one unit in momentum.

(c) Find the eigenstates $|\psi_l\rangle$ and corresponding eigenvalues $e^{i\phi_l}$ of Y. Write the eigenstates in both the position and momentum bases. Along the way, you should establish the Gaussian sum

$$e^{-i\pi l^2/D} = \frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} e^{i\pi j^2/D} e^{2\pi i j l/D}$$
.

The three bases $\{|q_j\rangle\}$, $\{|p_k\rangle\}$, and $\{|\psi_l\rangle\}$ are called *mutually unbiased*, because any inner product of a vector from one basis with a vector from another basis has magnitude $1/\sqrt{D}$.

(d) For a qubit (D = 2), if we let $|q_a\rangle = |a\rangle$ be the standard basis states, what are the states $|p_a\rangle$ and $|\psi_a\rangle$ and the operators Z, X, Y, and the Fourier transform F?

Fall 2009