4.1 Alternative derivation of the canonical error operators. A quantum operation
\[A = \sum_\alpha A_\alpha \otimes A_\alpha^\dagger. \]
can be reversed on a code subspace \(C \) if and only if the Kraus error operators \(A_\alpha \) satisfy
\[\langle e_j | A_\beta^\dagger A_\alpha | e_k \rangle = \mu^2 m_{\alpha\beta} \delta_{jk}, \]
where the vectors \(|e_j\rangle \) are any orthonormal basis for \(C \), \(\mu^2 \leq 1 \) (\(\mu = 1 \) for trace-preserving \(A \)), and \(m_{\alpha\beta} \) is a trace-one, positive matrix.

The (unnormalized) states that result from errors can be arranged in an array (illustrated here by the case where \(C \) is four-dimensional and there are three error operators)
\[
\begin{array}{ccc}
A_1|e_1\rangle & A_2|e_1\rangle & A_3|e_1\rangle \\
A_1|e_2\rangle & A_2|e_2\rangle & A_3|e_2\rangle \\
A_1|e_3\rangle & A_2|e_3\rangle & A_3|e_3\rangle \\
A_1|e_4\rangle & A_2|e_4\rangle & A_3|e_4\rangle \\
\end{array}
\]
where each row contains the states that arise from all the error operators acting on a particular code-space basis state and each column contains the states that come from a particular error operator acting on all the basis states. The conditions for reversal can be stated in the following way.

The vectors in a row span a subspace of dimension \(\leq \) (\# of error operators).
The subspaces for different rows are orthogonal, and all the rows have the same pairwise inner products, i.e., \(\langle e_j | A_\beta^\dagger A_\alpha | e_j \rangle = \mu^2 m_{\alpha\beta} \) is independent of \(j \). As a consequence, the dimensions of all the row subspaces are the same.

These conditions imply that the vectors in a column are orthogonal and thus span a subspace with the dimension of \(C \). All the vectors in a column have the same magnitude \(\langle e_j | A_\alpha^\dagger A_\alpha | e_j \rangle^{1/2} = \mu \sqrt{m_{\alpha\alpha}} \). These subspaces are not necessarily orthogonal.

Consider the operator
\[M_1 = \sum_\alpha A_\alpha |e_1\rangle \langle e_1 | A_\alpha^\dagger \]
for the first row. Show how the eigenvectors \(|\tilde{e}_\beta\rangle \) and eigenvalues \(\lambda_\beta \) of \(M \) can be used to define canonical Kraus error operators \(\tilde{A}_\beta \) for \(A \), which satisfy
\[\langle e_j | \tilde{A}_\beta^\dagger \tilde{A}_\alpha | e_k \rangle = \mu^2 d_\alpha \delta_{\alpha\beta} \delta_{jk}, \]
where \(d_\alpha \geq 0 \) and \(\sum_\alpha d_\alpha = 1 \).