
Solution 1.1

(a) x′ and y′ are arbitrary two-bit Boolean functions. A two-bit Boolean function is
a polynomial in two binary variables over the binary field Z2, and the most general such
polynomial is

B(x, y) = a⊕M1x⊕M2y ⊕ pxy .

The four constants in this expression are determined by the action of the Boolean function
on the four inputs:

B(0, 0) = a

B(1, 0) = a⊕M1

B(0, 1) = a⊕M2

B(1, 1) = a⊕M1 ⊕M2 ⊕ p

⇐⇒

a = B(0, 0)
M1 = B(0, 0)⊕B(1, 0)
M2 = B(0, 0)⊕B(0, 1)

p = B(0, 0)⊕B(1, 0)⊕B(0, 1)⊕B(1, 1)

.

Notice that the general two-bit Boolean function is determined by 4 binary parameters,
giving 24 such functions, as required.

The general form for a two-bit gate follows immediately by letting x′ and y′ be given
by independent two-bit Boolean functions.

(b) A reversible gate must be invertible. In investigating invertibility, we should be
thinking of the inputs and ouputs as two-dimensional vectors in the four-element vector
space over Z2. The additive constants a and b have no effect on invertibility, so we can
ignore them, i.e., set them to zero. Now let’s look at the action of a general gate on the
four inputs: (

0
0

)
−→

(
0
0

)
,

(
1
0

)
−→

(
M11

M21

)
,

(
0
1

)
−→

(
M12

M22

)
,

(
1
1

)
−→

(
M11

M21

)
⊕

(
M12

M22

)
⊕

(
p
q

)
.

The middle two outputs must be different from the zero vector and different from each
other; the six possible choices for these two vectors (the columns of M) are neatly sum-
marized in the six matrices given in (b). In two dimensions, making these two vectors
different also means they are linearly independent, which implies that

(
M11

M21

)
⊕

(
M12

M22

)

is the fourth vector in the space. If either p or q is nonzero, the fourth output will be equal
to one of the first three outputs, so invertibility requires that p = q = 0, i.e., no quadratic
terms.

1



You should remember that this is a neat way to express algebraically the 4! = 24
permutations of the four 2-bit strings.

(c)

M =
(

1 0
0 1

) (
x
y

)
−→

(
x
y

)
identity

M =
(

0 1
1 0

) (
x
y

)
−→

(
y
x

)
bit SWAP

M =
(

1 0
1 1

) (
x
y

)
−→

(
x

x⊕ y

)
CNOT with first bit as control

and second as target

M =
(

1 1
0 1

) (
x
y

)
−→

(
x⊕ y

y

)
CNOT with first bit as target

and second as control

M =
(

1 1
1 0

) (
x
y

)
−→

(
x⊕ y

x

)
CNOT with first bit as control and

second as target, followed by bit SWAP

M =
(

0 1
1 1

) (
x
y

)
−→

(
y

x⊕ y

)
CNOT with first bit as target and

second as control, followed by bit SWAP

2


