
Solution 1.3

Recall that NOT[x] = x ◦ x.

(a)

AND[x, y] = xy = NOT
[
NAND[x, y]

]
= (x ◦ y) ◦ (x ◦ y) ,

OR[x, y] = x⊕ y ⊕ xy = 1⊕ x̄ȳ = NAND
[
NOT[x],NOT[y]

]
= (x ◦ x) ◦ (y ◦ y) ,

XOR[x, y] = x⊕ y = (1⊕ x̄ȳ)(1⊕ xy)

= AND
[
OR[x, y],NAND[x, y]

]

=
((

(x ◦ x) ◦ (y ◦ y)
) ◦ (

x ◦ y
)) ◦

((
(x ◦ x) ◦ (y ◦ y)

) ◦ (
x ◦ y

))

(b)

f(x0, x1, . . . , xN ) = x̄0f0(x1, . . . , xN )⊕ x0f1(x1, . . . , xN ) = XOR
[
AND[x̄0, f0], AND[x0, f1]

]
,

so we write

f(x, x1, . . . , xN )

=




((
AND[x̄, f0] ◦AND[x̄, f0]

)
◦

(
AND[x, f1] ◦AND[x, f1]

))
◦

(
AND[x̄, f0] ◦AND[x, f1]

)


◦



((
AND[x̄, f0] ◦AND[x̄, f0]

)
◦

(
AND[x, f1] ◦AND[x, f1]

))
◦

(
AND[x̄, f0] ◦AND[x, f1]

)


=




((((
(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)) ◦
((

(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)))

◦
(((

x ◦ f1

) ◦ (
x ◦ f1

)) ◦
((

x ◦ f1

) ◦ (
x ◦ f1

))))

◦
(((

(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)) ◦
((

x ◦ f1

) ◦ (
x ◦ f1

))
)



◦



((((
(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)) ◦
((

(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)))

◦
(((

x ◦ f1

) ◦ (
x ◦ f1

)) ◦
((

x ◦ f1

) ◦ (
x ◦ f1

))))

◦
(((

(x ◦ x) ◦ f0

) ◦ (
(x ◦ x) ◦ f0

)) ◦
((

x ◦ f1

) ◦ (
x ◦ f1

))
)



1



This formula is nearly unreadable and certainly pointless. It does, however, show three things.
1. The formula has obvious structure, which is captured in a circuit diagram far more effectively than

in an algebraic formula.
2. The use of gates built from the fundamental gates—in this case, the use of NOT, AND, and OR,

instead of reducing to the fundamental gate NAND—is essential for depicting and understanding
even fairly simple circuits.

3. After a sufficiently long time, I can make TEX produce a formula as complicated as this.

We can simplify things pretty radically by using an approach pointed out to me by Mark Olah.
Let’s first simplify XOR. Start with de Morgan’s rule:

1⊕ x⊕ y ⊕ xy = NOR[x, y] = AND
[
NOT[x], NOT[y]

]
= x̄ȳ .

Then notice that XOR[x, y] = OR
[
AND[x̄, y],AND[x, ȳ]

]
, which when combined with de Morgan’s rule

gives

x⊕ y = XOR[x, y] = NAND
[
NAND[x̄, y], NAND[x, ȳ]

]
=

(
(x ◦ x) ◦ y

) ◦ (
x ◦ (y ◦ y)

)
.

This is a considerable simplification of the previous reduction of XOR to NANDs.
Now we’re going to do the same thing, but in the slightly more general context of (b). Notice that

for any x, y, and z, it is true that

x̄y ⊕ xz = XOR
[
AND[x̄, y], AND[x, z]

]
= OR

[
AND[x̄, y], AND[x, z]

]
,

because the arguments of the XOR and OR cannot simultaneously be true. Thus we have from de
Morgan’s rule,

f(x, x1, . . . , xN ) = x̄f0(x1, . . . , xN )⊕ xf1(x1, . . . , xN )

= XOR
[
AND[x̄, f0], AND[x, f1]

]

= OR
[
AND[x̄, f0], AND[x, f1]

]

= NAND
[
NAND[x̄, f0], NAND[x, f1]

]

=
(
(x ◦ x) ◦ f0

) ◦ (
x ◦ f1

)
.

The lesson here might be that the circle notation is a very bad way to recognize ways to reduce the
complexity of our formulas, as it just proliferates complicated formulas.

2


