
Solution 3.2

(a) This is trivial.

X|qj〉 =
1√
D

D−1∑

k=1

e−2πijk/DX|pk〉

=
1√
D

D−1∑

k=1

e−2πi(j+1)k/D|pk〉

= |qj+1〉

Z|pk〉 =
1√
D

D−1∑

j=1

e2πijk/DZ|qj〉

=
1√
D

D−1∑

j=1

e2πij(k+1)/D|qj〉

= |pk+1〉
(b) We can do this in the position basis or the momentum basis. Let’s do it in the position

basis:
ZX|qj〉 = Z|qj+1〉 = e2πi(j+1)/D|qj+1〉 ,

XZ|qj〉 = e2πij/DX|qj〉 = e2πij/D|qj+1〉 .

So ZX = e2πi/DXZ.
(c) We have Y |qj〉 = eiπ/DXZ|qj〉 = eiπ/De2πij/D|qj+1〉 and Y |pk〉 = e−iπ/DZX|pk〉 =

e−iπ/De−2πik/D|pk+1〉. Writing |ψ〉 =
∑

j cj |qj〉, the eigenvalue equation Y |ψ〉 = eiφ|ψ〉 becomes

∑

j

cje
iφ|qj〉 = Y |ψ〉 = eiπ/DXZ|ψ〉 = eiπ/D

∑

j

cje
2πij/D|qj+1〉 = e−iπ/D

∑

j

cj−1e
2πij/D|qj〉 ,

which implies that
cj−1e

2πij/D = cje
i(φ+π/D)

or



0 0 0 · · · 0 0 1
e2πi/D 0 0 · · · 0 0 0

0 e4πi/D 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · e−4πi/D 0 0
0 0 0 · · · 0 e−2πi/D 0







c0

c1

c2
...

cD−2

cD−1




= ei(φ+π/D)




c0

c1

c2
...

cD−2

cD−1




.

We could solve these eigenvalue equations formally, but it’s easier just to guess an answer. Let’s
try (building in normalization)

cj =
1√
D

eiπj2/De±2πijl/D ;
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plugging this guess into the eigenvalue equation gives eigenvalue eiφ = e±2πil/D. Both signs lead
to the same set of eigenvalues as l ranges from 0 to D − 1, but with a different labeling of the
corresponding eigenstates. Let’s choose the upper sign for specificity, giving eigenstates

|ψl〉 =
1√
D

∑

j

eiπj2/De2πijl/D|qj〉 , l = 0, . . . , D − 1,

with corresponding eigenvalues eiφl = e2πil/D.
We can do the same problem in the momentum basis. Writing |ψ〉 =

∑
k dk|pk〉, the eigen-

value equation Y |ψ〉 = eiφ|ψ〉 becomes

∑

k

dkeiφ|pk〉 = Y |ψ〉 = e−iπ/DZX|ψ〉 = eiπ/D
∑

k

dk−1e
−2πik/D|pk〉 ,

which implies that
dk−1e

−2πik/D = dkei(φ−π/D) .

Complex conjugating this to
d∗k−1e

2πik/D = d∗kei(−φ+π/D) ,

ones sees immediately that a (normalized) solution is d∗k = eiπk2/De±2πikl/D/
√

D, with corre-
sponding eigenvalue eiφ = e∓2πil/D. To match our previous labeling of the eigenvalues, we choose
the lower sign, obtaining eigenvectors

1√
D

∑

k

e−iπk2/De2πikl/D|pk〉 , l = 0, . . . , D − 1,

with corresponding eigenvalues eiφl = e2πil/D. Since the eigenvalue equation only determines the
eigenvectors up to a phase, all we can assert is that

|ψl〉 =
eiµl

√
D

∑

k

e−iπk2/De2πikl/D|pk〉 ,

where µl is a phase to be determined.
By transforming the position-basis expansion of |ψl〉 to the momentum basis, one finds

|ψl〉 =
1√
D

∑

j

eiπj2/De2πijl/D|qj〉 =
1√
D

∑

k

|pk〉 1√
D

∑

j

eiπj2/De2πij(l−k)/D ,

which implies that

eiµle−iπk2/De2πikl/D =
1√
D

∑

j

eiπj2/De2πij(l−k)/D .
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Since the right-hand side is a function only of the difference l−k, we have to choose µl = −πl2/D,
yielding the identity

e−iπl2/D =
1√
D

D−1∑

j=0

eiπj2/De2πijl/D ,

which is a famous Gaussian sum.
(d)

|pa〉 =
1√
2

∑

b

(−1)ab|b〉 (eigenstates |±〉 of Pauli X) ,

|ψa〉 =
1√
2

∑

b

ib(−1)ab|b〉 (eigenstates | ± i〉 of Pauli Y ) ,

X, Y , and Z all have eigenvalues ±1 on the appropriate basis states, so they are the qubit Pauli
operators, and F , by mapping the standard basis to the |±〉 basis, is the Hadamard H.
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