Solution 3.2

(a) This is trivial.
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(b) We can do this in the position basis or the momentum basis. Let’s do it in the position

basis: i D
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So ZX = e*™/PXZ.
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We could solve these eigenvalue equations formally, but it’s easier just to guess an answer. Let’s
try (building in normalization)
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plugging this guess into the eigenvalue equation gives eigenvalue e’® = e=2™/DP  Both signs lead
to the same set of eigenvalues as [ ranges from 0 to D — 1, but with a different labeling of the
corresponding eigenstates. Let’s choose the upper sign for specificity, giving eigenstates
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with corresponding eigenvalues e?®t = 27t/ D,

We can do the same problem in the momentum basis. Writing ) = >, di|pk), the eigen-
value equation Y|y) = e'®[1)) becomes
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which implies that
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Complex conjugating this to
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ones sees immediately that a (normalized) solution is dj = eimk®/DE2mikl/D |\ /D with corre-

sponding eigenvalue e*® = ¢¥27/D  To match our previous labeling of the eigenvalues, we choose
the lower sign, obtaining eigenvectors
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with corresponding eigenvalues e*®* = 2™/ Since the eigenvalue equation only determines the
eigenvectors up to a phase, all we can assert is that
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where p; is a phase to be determined.
By transforming the position-basis expansion of |¢;) to the momentum basis, one finds
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which implies that
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Since the right-hand side is a function only of the difference [ — k, we have to choose p; = —ml?/D,
yielding the identity
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which is a famous Gaussian sum.
(d)
Pa) = \/— Z 1)%%)b) (eigenstates |+) of Pauli X) ,

[Ya) = \/— Z —1)°[b) (eigenstates | £ i) of Pauli V) ,

X, Y, and Z all have eigenvalues 1 on the appropriate basis states, so they are the qubit Pauli
operators, and F', by mapping the standard basis to the |+) basis, is the Hadamard H.



