Phys 572 Quantum Information Theory

Fall 2014

Homework Problem 7.1

Discussion Saturday, November 22

7.1 Cloning and the isotropic POVM. The isotropic POVM for a *D*-dimensional Hilbert space has a POVM element, $dE_{|\phi\rangle} = \alpha |\phi\rangle \langle \phi| d\Gamma_{|\phi\rangle}$, for every ray $|\phi\rangle$ in projective Hilbert space, where $d\Gamma_{|\phi\rangle}$ is the unitarily invariant measure on projective Hilbert space and α is a positive constant, thus implying that all outcomes are equally weighted. The POVM satisfies a completeness relation

$$I = \int dE_{|\phi\rangle} = \alpha \int d\Gamma_{|\phi\rangle} |\phi\rangle \langle \phi| .$$

If the system is in state ρ , the probability to get outcome $|\phi\rangle$ in a measurement of the isotropic POVM is

$$dp(|\phi\rangle|\rho) = \operatorname{tr}(\rho \, dE_{\phi}) = \alpha \, d\Gamma_{|\phi\rangle} \langle \phi|\rho|\phi\rangle$$
.

To do this problem, we need to be able to do at least one integral over the invariant measure. The unitarily invariant line element on projective Hilbert space, called the *Fubini-Studi metric*, measures lengths in terms of Hilbert-space angle: the distance $d\gamma$ between a normalized vector $|\phi\rangle$ and a nearby normalized vector $|\phi'\rangle = |\phi\rangle + |d\phi\rangle$ is given by $\cos d\gamma = |\langle \phi | \phi' \rangle| = |1 + \langle \phi | d\phi \rangle|$. Hilbert-space angle is not changed by global phase changes, confirming that we are dealing with rays in projective Hilbert space. The Fubini-Studi line element is given by

$$d\gamma^2 = \sin^2 d\gamma = 1 - \cos^2 d\gamma = -2\operatorname{Re}(\langle \phi | d\phi \rangle) - |\langle \phi | d\phi \rangle|^2 .$$

Normalization of $|\phi'\rangle$ requires that

$$0 = \langle \phi' | \phi' \rangle - 1 = 2 \operatorname{Re}(\langle \phi | d\phi \rangle) + \langle d\phi | d\phi \rangle$$

which gives

$$d\gamma^2 = \langle d\phi | d\phi \rangle - |\langle \phi | d\phi \rangle|^2 = \langle d\phi | d\phi \rangle - \left(\mathrm{Im}(\langle \phi | d\phi \rangle) \right)^2 = \langle d\phi_{\perp} | d\phi_{\perp} \rangle + \langle d\phi_{$$

where $|d\phi_{\perp}\rangle = |d\phi\rangle - |\phi\rangle\langle\phi|d\phi\rangle$ is the projection of the small displacement $|d\phi\rangle$ orthogonal to $|\phi\rangle$.

The normalized vectors in a *D*-dimensional Hilbert space make up the sphere of unit radius, S_{2D-1} , in 2*D* real dimensions. The contribution $\langle d\phi | d\phi \rangle$ to the Fubini-Studi line element is the standard metric on this unit sphere. The quantity $\langle \phi | d\phi \rangle$ is the component of the small displacement along $|\phi\rangle$: the real part describes changes in normalization, and the imaginary part describes changes in phase. The real part disappears from the line element because of the normalization constraint; the square of the imaginary part is subtracted away to remove the contribution of phase changes, because a global phase change does not change the Hilbert-space angle between two vectors. Given a particular normalized vector $|\psi\rangle$, any other normalized vector can be written as

$$|\phi\rangle = e^{i\delta} \left(\cos\theta |\psi\rangle + \sin\theta |\chi\rangle\right)$$

where δ is a global phase, θ is a "polar angle" in the range $0 \leq \theta \leq \pi/2$, and $|\chi\rangle$ is a normalized vector orthogonal to $|\psi\rangle$. We can get rid of the global phase freedom by choosing $\delta = 0$, thus working with rays in projective Hilbert-space. A small change in $|\phi\rangle$ takes the form

$$|d\phi\rangle = d\theta \left(-\sin\theta|\psi\rangle + \cos\theta|\chi\rangle\right) + \sin\theta|d\chi\rangle ,$$

which gives

$$\begin{split} \langle \phi | d\phi \rangle &= \sin^2 \theta \langle \chi | d\chi \rangle , \\ \langle d\phi | d\phi \rangle &= d\theta^2 + \sin^2 \theta \langle d\chi | d\chi \rangle \end{split}$$

The resulting line element is

$$d\gamma^{2} = d\theta^{2} + \sin^{2}\theta \left(\langle d\chi | d\chi \rangle - \sin^{2}\theta | \langle \chi | d\chi \rangle |^{2} \right) = d\theta^{2} + \sin^{2}\theta \left(\langle d\chi_{\perp} | d\chi_{\perp} \rangle + \cos^{2}\theta | \langle \chi | d\chi \rangle |^{2} \right) ,$$

where $d\chi_{\perp}\rangle = |d\chi\rangle - |\chi\rangle\langle\chi|d\chi\rangle$ is the projection of $|d\chi\rangle$ orthogonal to $|\chi\rangle$.

The line element $\langle d\chi | d\chi \rangle -\sin^2 \theta | \langle \chi | d\chi \rangle |^2 = \langle d\chi_{\perp} | d\chi_{\perp} \rangle +\cos^2 \theta | \langle \chi | d\chi \rangle |^2$ is the standard metric on the unit sphere, S_{2D-3} , in 2D-2 real dimensions, except that along one real dimension, corresponding to phase changes of $|\chi\rangle$, lengths are scaled by a factor $\cos \theta$. The $\sin^2 \theta$ in the line element means that lengths along all 2D-3 real dimensions of S_{2D-3} are scaled by a factor of $\sin \theta$. Thus the integration measure that goes with the Fubini-Studi metric is

$$d\Gamma_{|\phi\rangle} = \sin^{2D-3}\theta\cos\theta \,d\theta \,dS_{2D-3} ,$$

where dS_{2D-3} is the standard measure on the unit sphere S_{2D-3} . This form of the integration measure is useful for doing integrals over functions of $|\langle \phi | \psi \rangle| = \cos \theta$.

In doing this problem, you should never have to calculate an explicit form for the area of a sphere. Instead, the area S_{2D-3} of S_{2D-3} can be left as a normalization constant, whose value cancels out of the ultimate answer to part (c).

(a) Using the completeness relation, determine the value of the positive constant α .

(b) Find the value of the integral

$$\int d\Gamma_{|\phi\rangle} |\langle \phi |\psi\rangle|^2 \; .$$

(c) One strategy for approximate cloning of an arbitrary state $|\psi\rangle$ is to measure the isotropic POVM and then make copies of the result $|\phi\rangle$. Find the average squared fidelity of the copies.