
1.6.
(a) Consider

ℓ−H(p) =
D∑

j=1

pj(− log qj) +
D∑

j=1

pj log pj =
D∑

j=1

pj log(pj/qj) .

Now extend p and q to one more alternative by defining pD+1 = 0 and qD+1 = 1 − Q.
Now q is a normalized probability distribution, i.e.,

D+1∑
j=1

qj = 1 .

(Notice that we do not require that qD+1 have the form 2−n.) Now we have,

D∑
j=1

pjℓj −H(p) = H(p||q) ≥ 0 ,

which gives the desired result,
ℓ ≥ H(p) .

The conditions for equality in the relative entropy tell us that this inequality is saturated
if and only if pj = qj = 2−ℓj and 0 = pD+1 = qD+1 = 1 − Q, i.e., Q = 1. Thus we have
equality if and only if the probabilities are all negative powers of 2; in this situation, we
can construct code words from a complete tree with ℓj = − log pj .

(b) We make an obvious choice by requesting codeword lengths ℓj = −⌈log pj⌉, where
⌈x⌉ is the smallest integer ≥ x. We have

log pj ≤ ℓj < − log pj + 1 .

Using the left inequality, we have qj = 2−ℓj ≤ pj , which gives

Q =
D∑

j=1

qj ≤
D∑

j=1

pj = 1 .

The Kraft inequality thus assures us that there are code words of the requested length.
This is called a Shannon-Fano code. Using the right inequality, we have

ℓ <
D∑

j=1

pj(− log pj + 1) = H(p) + 1 .

(c)
1. Let’s order the alternatives from most likely to least likely, i.e., p1 ≥ p2 ≥ . . . pD.
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Now we show the following: any optimal code can be converted to an equivalent optimal
code in which the two least likely alternatives, xD−1 and xD, have code words of the same
(maximum) length, these two code words differing only in the final letter. The code word
for xD ends in 0, and the code word for xD−1 ends in 1.

If some alternative has a code word longer than the code word of xD, we can simply
exchange the two code words, not increasing the average length in the process. Thus, if
the code is optimal, the least likely alternative must have a code word of the longest length
in the code.

If xD has a code word such that flipping the last letter is not a code word, then we
can shorten its code word by deleting the final letter, while maintaining the prefix-free
condition. Thus, if the code is optimal, xD must have a partner whose code word differs
only in the last letter.

If xD−1 has a shorter code word than the partner of xD, we can decrease—really, not
increase—the average length by exchanging the two code words. Thus, in an optimal code,
the two least likely alternatives have code words of the same (maximum) length. Now,
if xD−1 is still not the partner of xD, because it has the same code word length as the
partner, we can exchange the code words of xD−1 and the partner without changing the
average length. We can choose the code word of xD to end in 0 and that of xD−1 to end
in 1 without changing the average length.

We have shown what we intended.
2. Now amalgamate xD−1 and xD into a single alternative x′

D−1, with probability
p′D−1 = pD−1 + pD and with code word obtained by lopping off the final letter of the code
word of xD (or xD−1). Define a new set of (primed) alternatives that consists of x′

D−1

and all the original alternatives up through D− 2. The average length of the original code
words is

ℓ =

D∑
j=1

pjℓj

=

D−2∑
j=1

p′jℓ
′
j + (pD−1 + pD)︸ ︷︷ ︸

= p′D−1

× ℓD︸︷︷︸
= ℓ′D−1 + 1

=

D−1∑
j=1

p′jℓ
′
j + pD−1 + pD

= ℓ
′
+ pD−1 + pD .

Thus the problem of finding an optimal code for the original alternatives is reduced to
finding an optimal code for the primed alternatives.

Now we just repeat step 1, and we have shown that any optimal code can be converted
to a code constructed by the Huffman procedure.
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