
3.4
(a)

|⟨B⟩| =
∣∣|b− d|⟨σσσσ · a⊗ σσσσ · f⟩+ |b+ d|⟨σσσσ · c⊗ σσσσ · g⟩

∣∣
≤ |b− d||⟨σσσσ · a⊗ σσσσ · f⟩|+ |b+ d||⟨σσσσ · c⊗ σσσσ · g⟩|
≤ |b− d|+ |b+ d|
=

√
2
(√

1− b · d+
√
1 + b · d

)
=

√
2

√(√
1− b · d+

√
1 + b · d

)2
= 2

√
1 +

√
1− (b · d)2

≤ 2
√
2

(1)

The mucking around here with the expressions involving b · d is just a way of getting the
maximum without doing calculus. You could equally well do calculus on the the angle θ
between b and d, i.e., b · d = cos θ.

(b) We need to look at the necessary and sufficient conditions for equality in the three
inequalities in part (a). The condition for the first inequality is that the two correlation
coefficients (expectation values) have the same sign. The second inequality comes from the fact
that Pauli components have eigenvalues ±1 and thus that tensor products of Pauli components
also have eigenvalues±1. The maximum (minimum) expectation value of a Hermitian operator
is the maximum (minimum) eigenvalue. The condition for the second inequality is thus that
the expectation values have their maximum value +1 or their minimum value −1; by the
condition on the first inequality, both correlation coefficients must be maximal or both must
be minimal. This condition is achieved if and only if the joint quantum state |Ψ⟩ of the two
qubits is an eigenstate of the two tensor products with the same eigenvalue. Thus we conclude
that the necessary and sufficient conditions for the first two inequalities are that

σσσσ · a⊗ σσσσ · f |Ψ⟩ = ±|Ψ⟩ and σσσσ · c⊗ σσσσ · g|Ψ⟩ = ±|Ψ⟩ . (2)

The condition for the third inequality is that b ·d = 0, i.e., that b and d are orthogonal.
We could make the same argument exchanging the roles of the two qubits, P and Q, so we
can also conclude that a and c are orthogonal. Thus we have that a, c, and a × c form
a right-handed, orthogonal basis and likewise that b, d, and b × d, or f = (b − d)/

√
2,

g = (b + d)/
√
2, and f × g = b × d, form a right-handed, orthogonal basis. We could just

declare at this point that we will rotate the Cartesian axes on each qubit so that these two
right-handed, orthogonal sets are the local Cartesian axes. But we’ll go at it in a way that
finds the most general state given whatever Cartesian axes we started with.

To do this, we introduce a rotation RP that rotates the standard basis {ex, ey, ez} to the
the right-handed basis {a, c,a× d} and another rotation RQ that rotates the standard basis
{ex, ey, ez}to the right-handed basis {f ,g, f × g}. The corresponding unitary operators, URP

and URQ
, perform the following transformations:

URP
XU†

RP
= σσσσ ·RP ex = σσσσ · a

URP Y U†
RP

= σσσσ ·RPey = σσσσ · c

URP
ZU†

RP
= σσσσ ·RPez = σσσσ · a× c

URQXU†
RQ

= σσσσ ·RQex = σσσσ · f

URQ
Y U†

RQ
= σσσσ ·RQey = σσσσ · g

URQZU†
RQ

= σσσσ ·RQez = σσσσ · f × g

. (3)
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It is easy to see that

(X ⊗X)U†
RP

⊗ U†
RQ

|Ψ⟩ = (U†
RP

⊗ U†
RQ

)(URPXU†
RP

⊗ URQXU†
RQ

)|Ψ⟩

= (U†
RP

⊗ U†
RQ

)(σσσσ · a⊗ σσσσ · f)|Ψ⟩

= ±U†
RP

⊗ U†
RQ

|Ψ⟩ ,

(4)

i.e., that U†
RP

⊗ U†
RQ

|Ψ⟩ is a ±1 eigenstate of X ⊗X. Similarly, we have that

(Y ⊗ Y )U†
RP

⊗ U†
RQ

|Ψ⟩ = ±U†
RP

⊗ U†
RQ

|Ψ⟩ , (5)

i.e., that U†
RP

⊗ U†
RQ

|Ψ⟩ is a ±1 eigenstate of Y ⊗ Y .
For the lower sign, we get the singlet state,

U†
RP

⊗ U†
RQ

|Ψ⟩ = |β11⟩ =
1√
2
(|01⟩ − |10⟩) , (6)

and for the upper sign,

U†
RP

⊗ U†
RQ

|Ψ⟩ = |β01⟩ =
1√
2
(|01⟩+ |10⟩) . (7)

Both of these hold only up to a global phase, but that phase is irrelevant so we forget about
it.

Our final conclusion is that is that the upper bound for the CHSH inequality is saturated
if and only if

|Ψ⟩ = 1√
2

(
URP

|0⟩ ⊗ URQ
|1⟩ ± URP

|1⟩ ⊗ URQ
|0⟩

)
, (8)

with the measurements on the first qubit being along directions a = RPex and c = RPey and
on the second qubit along directions b = (g+f)/

√
2 = RQ(ey+ex)/

√
2 and d = (g−f)/

√
2 =

RQ(ey − ex)/
√
2. These results are local unitaries away from those we reached in class: the

state has to be a maximally entangled state, with the measurement directions chosen to match
the particular way the two qubits are correlated. We could dispense with the ± because one
case can be converted into the other by absorbing a sign into the local unitaries, e.g., by
preceding URP

by a 180◦ rotation about the z axis.
As a slightly nontrivial example, suppose both RP and RQ are −120◦ degree rotations

about (ex+ey+ez)/
√
3. Such a rotation R permutes the axes according Rex = ez, Rey = ex,

and Rez = ey. It can be decomposed into a 180◦ rotation about (ex + ez)/
√
2, whose

corresponding unitary operator is the Hadamard transform H = ie−i(X+Z)π/2
√
2 = (X +

Z)/
√
2, followed by a 90◦ rotation about ez, whose corresponding unitary operator is often

denoted S = eiπ/4e−iZπ/4 (the unit-determinant unitary operators for these rotations do
not have the phase factors in front of the operator exponentials). These operators have the
following matrix representations:

H → 1√
2

(
1 1
1 −1

)
S →

(
1 0
0 i

)
(9)
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Thus we have URP
= URQ

= SH. In this situation, the measurements are along a = Rex = ez,

b = R(ey + ex)/
√
2 = (ex + ez)/

√
2, c = Rey = ex, and d = R(ey − ex)/

√
2 = (ex − ez)/

√
2,

and the states that achieve the biggest violation of the CHSH inequality are

(S⊗S)(H⊗H)
1√
2

(
|01⟩±|10⟩

)
=

S ⊗ S(|00⟩ − |11⟩)/
√
2

−S ⊗ S(|01⟩ − |10⟩)/
√
2
=

(|00⟩+ |11⟩)/
√
2

−i(|01⟩ − |10⟩)/
√
2
=

|β00⟩
−i|β11⟩

.

(10)
The singlet state (the overall phase of −i is irrelevant) is one of the two possibilities, as is
obvious from the start from its invariance under simultaneous rotations of both qubits.
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For anyone who’s interested, here’s the old statement of the problem (drawn from Nielsen
and Chuang Problem 2.3) and its solution.

3.x. Maximal violation of the CHSH Bell inequality. Let A = σσσσ · a, B = σσσσ · b,
C = σσσσ · c, and D = σσσσ · d, where a, b, c, and d are unit vectors in three dimensions, and let

B = A⊗B + C ⊗B + C ⊗D −A⊗D = σσσσ · a⊗ σσσσ · (b− d) + σσσσ · c⊗ σσσσ · (b+ d)

be the Bell operator. The quantity we called S in our discussion of the CHSH inequality is
the expectation value of the Bell operator, i.e., S = ⟨B⟩.

(a) Show that

B2 = 4I ⊗ I + [A,C]⊗ [B,D] = 4(I ⊗ I − σσσσ · a× c⊗ σσσσ · b× d) .

(b) Use the result of part (a) to show that

|⟨B⟩| ≤ 2
√
2 .

This result, called T’sirelson’s inequality, determines the maximal violation of the CHSH Bell
inequality.

(c) Find the conditions for equality in T’sirelson’s inequality. (Warning: This third part
is hard, which is probably why it is not included in Nielsen and Chuang’s Problem 2.3.)

3.x. B = A⊗B + C ⊗B + C ⊗D −A⊗D = σσσσ · a⊗ σσσσ · (b− d) + σσσσ · c⊗ σσσσ · (b+ d)
(a) To get the first form of B2, all we need is that the square of any spin component is

the unit operator, i.e., A2 = B2 = C2 = D2 = I. The rest is simply writing things out:

B2 = A2 ⊗B2 + C2 ⊗B2 + C2 ⊗D2 +A2 ⊗D2

+AC ⊗B2 + CA⊗B2 −A2 ⊗BD −A2 ⊗DB

+ C2 ⊗BD + C2 ⊗DB − CA⊗D2 −AC ⊗D2

+AC ⊗BD + CA⊗DB − CA⊗BD −AC ⊗DB

= 4I ⊗ I

+ (AC + CA)⊗ I − I ⊗ (BD +DB) + I ⊗ (BD +DB)− (CA+AC)⊗ I

+AC ⊗ [B,D]− CA⊗ [B,D]

= 4I ⊗ I + [A,C]⊗ [B,D]

(11)

Now recall that the product of two spin components is

AC = (σσσσ·a)(σσσσ·c) = σjσkajck = (δjk+iϵjklσl)ajck = ajcj+iσlϵljkajck = a·c+iσσσσ·a×c , (12)

which gives us
AC + CA = 2a · c ,

[A,C] = AC − CA = 2iσσσσ · a× c .
(13)
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Plugging this into the expression for B2, we get the second form,

B2 = 4(I ⊗ I − σσσσ · a× c⊗ σσσσ · b× d) . (14)

(b) We start with the fact that for a Hermitian operator H,

⟨(∆H)2⟩ = ⟨(H − ⟨H⟩)2⟩ = ⟨H2⟩ − ⟨H⟩2 , (15)

i.e.,
|⟨H⟩|2 = ⟨H⟩2 = ⟨H2⟩ − ⟨(∆H)2⟩ ≤ ⟨H2⟩ , (16)

with equality if and only if the variance is zero, i.e., ⟨(∆H)2⟩ = 0, which holds if and only
if the state under consideration is an eigenstate of H. Let’s apply this to the operator in
part (a):

|⟨B⟩|2 ≤ ⟨B2⟩ = 4 + ⟨[A,C]⊗ [B,D]⟩ = 4(1− ⟨σσσσ · a× c⊗ σσσσ · b× d⟩) . (17)

Equality holds here if and only if ⟨B⟩2 = ⟨B2⟩, i.e., the state under consideration is an eigen-
state of B.

Defining unit vectors r and s by a× c = |a× c|r and b× d = |b× d|s, we can write

|⟨B⟩|2 ≤ ⟨B2⟩ = 4
(
1− |a× c||b× d|C(r, s)

)
, (18)

where C(r, s) = ⟨σσσσ · r⊗ σσσσ · s⟩ is the correlation coefficient between a measurement of σσσσ · r on
the first qubit and a measurement of σσσσ · s on the second qubit. Since the spin components
take on values ±1, the correlation coefficient is bounded by |C(r, s)| ≤ 1, which gives us

|⟨B⟩|2 ≤ ⟨B2⟩ ≤ 4(1 + |a× c||b× d|) (19)

with the second equality holding if and only if C(r, s) = −1, which is the same as saying the
state is an eigenstate of σσσσ · r⊗ σσσσ · s with eigenvalue −1.

Finally, using the fact the the magnitude of a cross product is bounded above by 1, we
get

|⟨B⟩|2 ≤ ⟨B2⟩ ≤ 4(1 + |a× c||b× d|) ≤ 8 , (20)

which is the desired upper bound on |⟨B⟩|. Equality holds in the third inequality if and only
if |a× c| = |b× d| = 1, which is the same as saying that a and c are at right angles and that
b and d are at right angles.

(c) To achieve equality in the bound |⟨B⟩|2 ≤ 8, we have to satisfy the three conditions
listed above: (iii) |a × c| = |b × d| = 1, i.e., a and c are at right angles, and b and d are at
right angles; (ii) C(r, s) = −1, i.e., the state is an eigenstate of σσσσ · r ⊗ σσσσ · s with eigenvalue
−1; and (i) ⟨B⟩2 = ⟨B2⟩, i.e., the state is an eigenstate of B.

(iii) is easy to satisfy, so just do it. We have that {a, c, r = a×c} and {b,d, s = b×d} are
right-handed sets of orthonormal vectors in three dimensions. Hence, {f = (b− d)/

√
2 , g =

(b+ d)/
√
2 , r = f × g} is also a right-handed orthonormal set.
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To satisfy (ii), we require that the quantum state |Ψ⟩ satisfy

σσσσ · r⊗ σσσσ · s|Ψ⟩ = −|Ψ⟩ . (21)

Once (ii) and (iii) have been satisfied, we have ⟨B2⟩ = 8, so to satisfy (i) requires that

±2
√
2 = ⟨B⟩ =

√
2
(
⟨σσσσ · a⊗ σσσσ · f⟩+ ⟨σσσσ · c⊗ σσσσ · g⟩

)
. (22)

The only way to satisfy this is to have both expectation values equal to +1 or −1 and the
only way for this to be true is to have the quantum state be an eigenstate of both operators
with the same eigenvalue, i.e,

σσσσ · a⊗ σσσσ · f |Ψ⟩ = ±|Ψ⟩ and σσσσ · c⊗ σσσσ · g|Ψ⟩ = ±|Ψ⟩ . (23)

The easiest way to get a handle on what’s going on is to introduce a rotation RP that
rotates the standard basis {ex, ey, ez} to the the right-handed basis {a, c, r} and another
rotation RQ that rotates the standard basis {ex, ey, ez}to the right-handed basis {f ,g, s}.
The corresponding unitary operators, URP and URQ , perform the following transformations:

URPXU†
RP

= σσσσ ·RPex = σσσσ · a

URP
Y U†

RP
= σσσσ ·RPey = σσσσ · c

URPZU†
RP

= σσσσ ·RP ez = σσσσ · r

URQ
XU†

RQ
= σσσσ ·RQex = σσσσ · f

URQY U†
RQ

= σσσσ ·RQey = σσσσ · g

URQ
ZU†

RQ
= σσσσ ·RQez = σσσσ · s

. (24)

It is easy to see, for example, that

(Z ⊗ Z)U†
RP

⊗ U†
RQ

|Ψ⟩ = (U†
RP

⊗ U†
RQ

)(URPZU †
RP

⊗ URQZU†
RQ

)|Ψ⟩

= (U†
RP

⊗ U†
RQ

)(σσσσ · r⊗ σσσσ · s)|Ψ⟩

= −U†
RP

⊗ U†
RQ

|Ψ⟩ ,

(25)

i.e., that U†
RP

⊗ U†
RQ

|Ψ⟩ is a −1 eigenstate of Z ⊗ Z. Elaborating this, we have the following
eigenvalue equations:

(X ⊗X)U†
RP

⊗ U†
RQ

|Ψ⟩ = ±U†
RP

⊗ U†
RQ

|Ψ⟩ ,

(Y ⊗ Y )U†
RP

⊗ U†
RQ

|Ψ⟩ = ±U†
RP

⊗ U†
RQ

|Ψ⟩ ,

(Z ⊗ Z)U†
RP

⊗ U†
RQ

|Ψ⟩ = −U†
RP

⊗ U†
RQ

|Ψ⟩ .

(26)

For the lower sign, we get the singlet state,

U†
RP

⊗ U†
RQ

|Ψ⟩ = |β11⟩ =
1√
2
(|01⟩ − |01⟩) , (27)

vi



and for the upper sign,

U†
RP

⊗ U†
RQ

|Ψ⟩ = |β01⟩ =
1√
2
(|01⟩+ |01⟩) . (28)

Both of these hold only up to a global phase, but that phase is irrelevant to our conclusion.
Our final conclusion is that is that to saturate the upper bound for the CHSH inequality

requires using one of the states

1√
2

(
URP |0⟩ ⊗ URQ |1⟩ ± URP |1⟩ ⊗ URQ |0⟩

)
, (29)

and making measurements on the first qubit along directions a = RP ex and c = RP ey and on
the second qubit along directions b = (g + f)/

√
2 = RQ(ey + ex)/

√
2 and d = (g − f)/

√
2 =

RQ(ey − ex)/
√
2. These results are local unitaries away from those we reached in class: the

state has to be a maximally entangled state, with the measurement directions chosen to match
the particular way the two qubits are correlated. We could dispense with the ± because the
minus sign can be absorbed into one of the local unitaries. Since we consistently used necessary
and sufficient conditions for saturating the T’sirelson bound, our result is both necessary and
sufficient for equality.

As a slightly nontrivial example, suppose both RP and RQ are −120◦ degree rotations
about (ex+ey+ez)/

√
3. Such a rotation R permutes the axes according Rex = ez, Rey = ex,

and Rez = ey. It can be decomposed into a 180◦ rotation about (ex + ez)/
√
2, whose

corresponding unitary operator is the Hadamard transform H = ie−i(X+Z)π/2
√
2 = (X +

Z)/
√
2, followed by a 90◦ rotation about ez, whose corresponding unitary operator is often

denoted S = eiπ/4e−iZπ/4 (the unit-determinant unitary operators for these rotations do
not have the phase factors in front of the operator exponentials). These operators have the
following matrix representations:

H → 1√
2

(
1 1
1 −1

)
S →

(
1 0
0 i

)
(30)

(the unit-determinant unitary for a 90◦ rotation about Thus we have URP
= URQ

= SH. In

this situation, the measurements are along a = Rex = ez, b = R(ey+ex)/
√
2 = (ex+ez)/

√
2,

c = Rey = ex, and d = R(ey−ex)/
√
2 = (ex−ez)/

√
2, and the states that achieve the biggest

violation of the CHSH inequality are

(S⊗S)(H⊗H)
1√
2

(
|01⟩±|10⟩

)
=

S ⊗ S(|00⟩ − |11⟩)/
√
2

−S ⊗ S(|01⟩ − |10⟩)/
√
2
=

(|00⟩+ |11⟩)/
√
2

−i(|01⟩ − |10⟩)/
√
2
=

|β00⟩
−i|β11⟩

.

(31)
The singlet state (the overall phase of −i is irrelevant) is one of the two possibilities, as is
obvious from the start from its invariance under simultaneous rotations of both qubits.
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