
average, is greater than the lesser of the two information gains and less than the greater of the two
gains, i.e.,

min{H(p0),H(p1)} ≤ π0H(p0) + π1H(p1) ≤ max{H(p0),H(p1)} . (2.100)

Now consider the opposing case where the identity of the distribution to be sampled remains
unknown. In this case, the most one can say about which outcome will occur in the sampling is
that it is controlled by the probability distribution p(b) = π0p0(b) + π1p1(b). In other words, the
sampling outcome will be even more unpredictable than it was in either of the two individual cases;
some of the unpredictability will be due to the indeterminism p0(b) and p1(b) describe and some of
the unpredictability will be due to the fact that the individual distribution from which the sample
is drawn remains unknown. Hence it must be the case that H(p) ≥ H(p0) and H(p) ≥ H(p1).

The excess of H(p) over π0H(p0) + π1H(p1) is the average gain of information one can expect
about the distribution itself. This quantity, called the mutual information [60, 61],

J(p0, p1;π0, π1) = H(π0p0 + π1p1) −
(

π0H(p0) + π1H(p1)
)

, (2.101)

is the natural candidate for distinguishability that we seek in this section. If the two distributions
p0(b) and p1(b) are completely distinguishable, then all the information gained in a sampling should
be solely about the identity of the distribution; the quantity J(p0, p1;π0, π1) should reduce to
H(π), the information that can be gained by sampling the prior distribution π = {π0, π1}. If the
distributions p0(b) and p1(b) are completely indistinguishable, then J(p0, p1;π0, π1) should reduce
to zero; this signifies that in sampling one learns nothing whatsoever about the distribution from
which the sample is drawn.

Notice that this distinguishability measure depends crucially on the observer’s prior state of
knowledge, quantified by π = {π0, π1}, about whether p0(b) or p1(b) is actually the case. Thus it is
a measure of distinguishability relative to a given state of knowledge. There is, of course, nothing
wrong with this, just as there was nothing wrong with the error-probability distinguishability
measure; one just needs to recognize it as such.

These are the ideas behind taking mutual information as a measure of distinguishability. In
the remainder of this section, we work toward justifying a precise expression for Eq. (2.101) and
showing in a detailed way how it can be interpreted in an operational context.

2.4.1 Derivation of Shannon’s Information Function

The function H(p) that quantifies the average information gained upon sampling a distribution
p(b) will ultimately turn out to be the famous Shannon information function [60, 62]

H(p) = −
∑

b

p(b) ln p(b) . (2.102)

What we should like to do here is justify this expression from first principles. That is to say, we
shall build up a theory of “information gain” based solely on the probabilities in an experiment
and find that that theory gives rise to the expression (2.102).

To start with our most basic assumption, we reiterate the idea that the information gained in
performing an experiment or observation is a function of how well the outcomes to that experiment
or observation can be predicted in the first place. Other characteristics of an outcome that might
convey “information” in the common sense of the word, such as shape, color, smell, feel, etc.,
will be considered irrelevant; indeed, we shall assume any such properties already part of the very
definition of the outcome events. Formally this means that if a set of events {x1, x2, . . . , xn} has
a probability distribution p(x), not only is the expected information gain in a sampling, H(p),
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exclusively a function of the numbers p(x1), p(x2), . . . , p(xn), but also it must be independent
of the labelling of that set. In other words, H(p) ≡ H(p(x1), p(x2), . . . , p(xn)) is required to be
invariant under permutations of its arguments. This is called the requirement of “symmetry.”

The most important technical property of H(p) is that, even though information gain is a sub-
jective concept depending on the observer’s prior state of knowledge, it should at least be objective
enough that it not depend on the method by which knowledge of the experimental outcomes is
acquired. We can make this idea firm with a simple example. Consider an experiment with three
mutually exclusive outcomes x, y, and z. Note that the probability that z does not occur is

p(¬z) = 1 − p(z) = p(x) + p(y) . (2.103)

The probabilities for x and y given that z does not occur are

p(x|¬z) =
p(x)

p(x) + p(y)
and p(y|¬z) =

p(y)

p(x) + p(y)
. (2.104)

There are at least two methods by which an observer can gather the result of this experiment.
The first method is by the obvious tack of simply finding which outcome of the three possible ones
actually occurred. In this case, the expected information gain is, by our convention,

H
(

p(x), p(y), p(z)
)

. (2.105)

The second method is more roundabout. One could, for instance, first check whether z did or did
not occur, and then in the event that it did not occur, further check which of x and y did occur.
In the first phase of this method, the expected information gain is

H
(

p(¬z), p(z)
)

. (2.106)

For those cases in which the second phase of the method must be carried out, a further gain of
information can be expected. Namely,

H
(

p(x|¬z), p(y|¬z)
)

. (2.107)

Note, though, that this last case is only expected to occur a fraction p(¬z) of the time. Thus, in
total, the expected information gain by this more roundabout method is

H
(

p(¬z), p(z)
)

+ p(¬z)H
(

p(x|¬z), p(y|¬z)
)

. (2.108)

The assumption of “objectivity” is that the quantities in Eqs. (2.105) and (2.108) are identical.
That is to say, upon changing the notation slightly to px = p(x), py = p(y), pz = p(z)

H(px, py, pz) = H(px + py , pz) + (px + py)H

(

px

px + py
,

py

px + py

)

. (2.109)

In the event that we are instead concerned with n mutually exclusive events, the same assumption
of “objectivity” leads to the identification,

H(p1, . . . , pn) = H(p1 + p2 , p3 , . . . , pn) + (p1 + p2)H

(
p1

p1 + p2
,

p2

p1 + p2

)

. (2.110)

It turns out that the requirements of symmetry and objectivity (as embodied in Eq. (2.110) )
are enough to uniquely determine the form of H(p) (up to a choice of units) provided we allow
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ourselves one extra convenience [63], namely, that we allow the introduction of an arbitrary positive
parameter α 6= 1 into Eq. (2.110) in the following way,

Hα(p1, . . . , pn) = Hα(p1 + p2 , p3 , . . . , pn) + (p1 + p2)
αHα

(
p1

p1 + p2
,

p2

p1 + p2

)

, (2.111)

and define H(p) to be the limiting value of Hα(p) as α→1. (The introduction of the subscript on
Hα(p) is made simply to remind us that the solutions to Eq. (2.111) depend upon the parameter
α.) This idea is encapsulated in the following theorem.

Theorem 2.7 (Daróczy) Let

Γn =

{

(p1, . . . , pn) | pk ≥ 0, k = 1, . . . , n, and
n∑

i=1

pi = 1

}

(2.112)

be the set of all n-point probability distributions and let Γ =
⋃

n Γn be the set of all discrete probability
distributions. Suppose the function Hα : Γ → IR, α 6= 1, is symmetric in all its arguments and
satisfies Eq. (2.111) for each n ≥ 2. Then, under the convention that 0 ln 0 = 0, the limiting value
of Hα as α→ 1 is uniquely specified up to a constant C by

H(p1, . . . , pn) = − C

ln 2

n∑

i=1

pi ln pi . (2.113)

The constant C in this expression fixes the “units” of information. If C = 1, information is said
to be measured in bits; if C = ln 2, information is said to be measured in nats. (A relatively
obscure measure of information is the case C = log10 2, where the units are called Hartleys [64].)
In this document, we will generally take C = ln 2. On the occasion, however, that we do consider
information in units of bits we shall write log() for the base-2 logarithm, rather than the more
common log2().

△ The proof of Theorem 2.7, deserving wider recognition, is due to Daróczy [65] and proceeds
as follows. Define si = p1 + · · · + pi and let

f(x) = Hα(x, 1 − x) for 0 ≤ x ≤ 1 . (2.114)

Then, by repeated application of condition (2.111), it follows immediately that

Hα(p1, . . . , pn) =
n∑

i=2

sα
i f

(
pi

si

)

. (2.115)

Thus all we need do is focus on finding an explicit expression for the function f .
We have from the symmetry requirement that Hα(x, 1 − x) = Hα(1 − x, x) and hence,

f(x) = f(1 − x) . (2.116)

In particular, f(0) = f(1). Furthermore, if x and y are two nonnegative numbers such that x+y ≤ 1,
we must also have

Hα(x, y, 1 − x− y) = Hα(y, x, 1 − x− y) . (2.117)
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However, by Eq. (2.111)

Hα(x, y, 1 − x− y) = Hα(x, 1 − x) + (1 − x)αHα

(
y

1 − x
,
1 − x− y

1 − x

)

= Hα(x, 1 − x) + (1 − x)αHα

(
y

1 − x
, 1 − y

1 − x

)

= f(x) + (1 − x)αf

(
y

1 − x

)

. (2.118)

Thus it follows that f must satisfy the functional equation

f(x) + (1 − x)αf

(
y

1 − x

)

= f(y) + (1 − y)αf

(
x

1 − y

)

, (2.119)

for x, y ∈ [0, 1) with x + y ≤ 1. (In the case α = 1, Eq. (2.119) is known commonly as the
fundamental equation of information [66].)

We base the remainder of our conclusions on the study of Eq. (2.119). Note first that if x = 0,
it reduces to,

f(0) + f(y) = f(y) + (1 − y)αf(0) . (2.120)

Since y is still arbitrary, it follows from this that f(0) = 0; thus f(1) = 0, too. Now let p = 1 − x
for x 6= 1 and let q = y/(1 − x) = y/p. With this, the information equation (2.119) becomes

f(p) + pαf(q) = f(pq) + (1 − pq)αf

(
1 − p

1 − pq

)

. (2.121)

We can use this equation to show that

F (p, q) ≡ f(p) + [pα + (1 − p)α] f(q) (2.122)

is symmetric in q and p, i.e., F (p, q) = F (q, p). From that fact, a unique expression for f(p) follows
trivially. Let us just show this before going further:

0 = F

(

p ,
1

2

)

− F

(
1

2
, p

)

= f(p) + [pα + (1 − p)α] f

(
1

2

)

− f

(
1

2

)

−
[(

1

2

)α

+

(
1

2

)α]

f(p)

=
(

1 − 21−α
)

f(p) + f

(
1

2

)

[ pα + (1 − p)α − 1 ] , (2.123)

which implies that

f(p) = C
(

21−α − 1
)−1

[ pα + (1 − p)α − 1 ] , (2.124)

where the constant C = f(1
2). Because f(0) = f(1) = 0, Eq. (2.124) also holds for p = 0 and p = 1.

To cap off the derivation of Eq. (2.124), let us demonstrate that F (p, q) is symmetric. Just
expanding and regrouping, we have, by Eq. (2.121), that

F (p, q) = [f(p) + pαf(q)] + (1 − p)αf(q)

= f(pq) + (1 − pq)αf

(
1 − p

1 − pq

)

+ (1 − p)αf(q)

= f(pq) + (1 − pq)α
[

f

(
1 − p

1 − pq

)

+

(
1 − p

1 − pq

)α

f(q)

]

. (2.125)
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If we can show that the last term in this expression is symmetric in q and p, then we will have
shown that F (p, q) is symmetric. To this end, let us define

A(p, q) = f

(
1 − p

1 − pq

)

+

(
1 − p

1 − pq

)α

f(q) . (2.126)

Also, to save a little room, let

z =
1 − p

1 − pq
. (2.127)

Then,

1 − zq =
1 − q

1 − pq
and 1 − z = p

(
1 − q

1 − pq

)

. (2.128)

So that, upon using Eq. (2.121) again, we get

A(p, q) = f(z) + zαf(q)

= f(zq) + (1 − zq)αf

(
1 − z

1 − zq

)

= f(1 − zq) + (1 − zq)αf

(
1 − z

1 − zq

)

= f

(
1 − q

1 − pq

)

+

(
1 − q

1 − pq

)α

f(p)

= A(q, p) . (2.129)

Thus F (p, q) is symmetric. This completes the demonstration of Eq. (2.124).
We just need plug the expression for f(p) into Eq. (2.115) to get a nearly final result,

Hα(p1, . . . , pn) =
n∑

i=2

sα
i C

(

21−α − 1
)−1

[(
pi

si

)α

+

(

1 − pi

si

)α

− 1

]

= C
(

21−α − 1
)−1

n∑

i=2

[ pα
i + (si − pi)

α − sα
i ]

= C
(

21−α − 1
)−1

n∑

i=2

(
pα

i + sα
i−1 − sα

i

)

= C
(

21−α − 1
)−1

(
n∑

i=2

pα
i + sα

1 − sα
n

)

= C
(

21−α − 1
)−1

(
n∑

i=1

pα
i − 1

)

. (2.130)

Now in taking the limit α→ 1, note that both the numerator and denominator of this expression
vanishes. Thus we must use l’Hospital’s rule in the calculating limit, i.e., first take the derivative
with respect to α of the numerator and denominator separately and then take the limit:

lim
α→0

Hα(p1, . . . , pn) = lim
α→0

C
(

−21−α ln 2
)−1

(
n∑

i=1

pα
i ln pi

)

34



= − C

ln 2

n∑

i=1

pi ln pi . (2.131)

This completes our derivation of the Shannon information formula (2.102). It is to be hoped that
this has conveyed something of the austere origin of the information-gain concept. 2

We finally mention that the Daróczy informations of type-α, i.e., Eq. (2.130), appearing in this
derivation are of interest in their own right. First of all, there is a simple relation between these
and the Renyi informations of degree-α introduced in Section 2.2; namely,

Hα(p) ≡ 1

α− 1
ln

(
n∑

i=1

pα
i

)

=
1

α− 1
ln

(
1

C

(

21−α − 1
)

Hα(p) + 1

)

. (2.132)

Secondly, they share many properties with the Shannon information [66] while being slightly more
tractable for some applications, there being no logarithm in their expression.

2.4.2 An Interpretation of the Shannon Information

The justification of the information-gain concept can be strengthened through an operational ap-
proach to the question. To carry this out, let us develop the following example. Suppose we were
to perform an experiment with four possible outcomes x1, x2, x3, x4, the respective probabilities
being p(x1) = 1

20 , p(x2) = 1
5 , p(x3) = 1

4 , and p(x4) = 1
2 . The expected gain of information in this

experiment is given by Eq. (2.102) and is numerically approximately 1.68 bits. By the fundamental
postulate of Section 2.4.1, we know that this information gain will be independent of the method
of questioning used in discerning the outcome. In particular, we could consider all possible ways of
determining the outcome by way of binary yes/no questions. For instance, we could start by asking,
“Is the outcome x1?” If the answer is yes, then we are done. If the answer is no, then we could
further ask, “Is the outcome x2?,” and proceed in similar fashion until the identity of the outcome
is at hand. This and three other such binary-question methodologies are depicted schematically in
Figure 2.1.

The point of interest to us here is that each such questioning scheme generates, by its very
nature, a code for the possible outcomes to the experiment. That code can be generated by writing
down, in order, the yes’s and no’s encountered in traveling from the root to each leaf of these
schematic trees. For instance, by substituting 0 and 1 for yes and no, respectively, the four trees
depicted in Figure 2.1 give rise to the codings:

Scheme 1 Scheme 2 Scheme 3 Scheme 4

x1 ↔ 0 x1 ↔ 00 x1 ↔ 11 x1 ↔ 011
x2 ↔ 10 x2 ↔ 01 x2 ↔ 0 x2 ↔ 010
x3 ↔ 110 x1 ↔ 10 x1 ↔ 100 x3 ↔ 00
x4 ↔ 111 x1 ↔ 11 x1 ↔ 101 x4 ↔ 1

Codes that can be generated from trees in this way are called instantaneous or prefix-free and
are noteworthy for the property that concatenated strings of their codewords can be uniquely
deciphered just by reading from left to right. This follows because no codeword in such a coding
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