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Suppose we have a population of N individuals, each of whom has values for d at-
tributes. We denote the values by xn,j , where n, ranging from 1 to N , denotes the indi-
vidual and j, ranging from 1 to d, denotes the attribute. We will assume that the values
have all been centered so that within the (large) population we are considering, they have
mean zero, and we will further assume that the values have been rescaled so that they all
lie in the same interval, which we choose to be the interval [−1, 1]. What we are interested
in is the sample correlation matrix,

Cjk =
1

N

N∑
n=1

xn,jxn,k

It is easy to see that if we define an N × d population matrix X, whose matrix elements
are Xnj = xn,j , the correlation matrix is C = XTX/N . The other way of combining X
and XT gives a different sort of sample correlation matrix, B = XXT /d, whose matrix
elements are

Bnm =
1

d

d∑
j=1

xn,jxm,j .

Whereas B gives the correlation between attributes, averaged over the population, D
expresses the correlation between individuals, averaged over attributes.

Let’s recast things in terms of bras and kets and operators, partly because I prefer
abstractions to representations and partly to make a connection with the notation we use
in quantum mechanics. We let |ej⟩ be the basis vector for the jth attribute, |fn⟩ the basis
vector for the nth individual, and

X =
∑
n,j

xn,j |fn⟩⟨ej |

the operator corresponding to the matrix X. The first sample correlation operator is

C =
1

N
XTX =

1

N

∑
n,j,m,k

|ej⟩xn,j ⟨fn|fm⟩︸ ︷︷ ︸
= δnm

xm,k⟨ek|

=
∑
j,k

|ej⟩

(
1

N

∑
n

xn,jxn,k

)
⟨ek|

=
∑
j,k

Cjk|ej⟩⟨ek| ,
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and the second is

B =
1

d
XXT =

1

d

∑
n,j,m,k

|fn⟩xn,j ⟨ej |ek⟩︸ ︷︷ ︸
= δjk

xm,k⟨fm|

=
∑
n,m

|fn⟩

1

d

∑
j

xn,jxm,j

 ⟨fm|

=
∑
n,m

Bnm|fn⟩⟨fm| .

Since we’re dealing with real quantities, we are working in a real vector space: inner
products are real and symmetric, adjoints become transposes, and unitary operators reduce
to orthogonal matrices. In order not to work with nonsquare matrices like X, we tack on
additional columns of zeroes to the population matrix X, to make it square; these new
columns can be thought of as describing attributes for which all individuals have a zero
value. We add additional basis vectors |ej⟩ for these irrelevant attributes.

Since the correlation matrix C is symmetric and positive, we can diagonalize it in an
orthonormal basis,

C =
∑
j

λ2
j |uj⟩⟨uj | ,

with nonnegative eigenvalues λ2
j . The vectors |uj⟩ can be thought of as new attributes,

which are just the right combinations of the original attributes to be uncorrelated. The
new attributes are called the principal components; finding the principal components is a
standard technique for determining the important attributes of a population, as opposed
to the original attributes, which were probably chosen because they were easy to observe.
Just as ⟨fn|X|ej⟩ = xn,j is the value of the jth original attribute for the nth individual,
⟨fn|X|uj⟩ = yn,j can be thought of as the value of the jth new attribute for the nth
individual. The sample correlation matrix for the new attributes,

1

N

N∑
n=1

yn,jyn,k =
1

N

N∑
n=1

⟨uj |XT |fn⟩⟨fn|X|uk⟩ =
1

N
⟨uj |XTX|uk⟩ = ⟨uj |C|uk⟩ = λ2

jδjk ,

is, of course, diagonal, with the eigenvalues λ2
j expressing the strength of the self-correla-

tion, or variability, of the new attributes. There is no good reason to use normalized
vectors for the new attributes, except that the eigenvalues then express the strength of
self-correlation of the new attributes.

The polar-decomposition theorem says that there is an orthogonal matrix O such that

X = O
√
XTX =

√
NO

√
C =

√
XXTO =

√
d
√
BO .

The operator O maps the eigenvectors of XTX to the eigenvectors of XXT , i.e.,

O|uj⟩ = |nj⟩ , dB = XXT = OXTXOT = NOCOT = N
∑
j

λ2
j |nj⟩⟨nj | ,
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and the population operator X takes the form

X =
√
N
∑
j

λj |nj⟩⟨uj | , X|uj⟩ =
√
Nλj |nj⟩ .

The quantities
√
Nλj are the singular values of X, and the orthonormal vectors |uj⟩ and

|nj⟩ are the right and left singular vectors of X. We can now interpret the singular values
and basis vectors |nj⟩ by noting that

yn,j = ⟨fn|X|uj⟩ =
√
Nλj⟨fn|nj⟩ ;

i.e., the value of the jth new attribute for the nth individual has is governed by the singular
value

√
Nλj and the projection of |fn⟩ onto |nj⟩. It is natural to rescale the values of the

new attributes by the corresponding singular value,

yn,j√
Nλj

= ⟨fn|nj⟩ ,

and then the value of the jth new attribute for nth individual is simply obtained by
projecting the individual’s vector onto the left singular vector for the new attribute.

It is useful to do a simple example to put some flesh on these abstractions. Suppose
we have a population that has two attributes, both of which take on values ±1 and which
are completely correlated: if an individual has value +1 for the first attribute, it has +1 for
the second attribute as well; similarly, if an individual has value −1 for the first attribute,
it has −1 for the second. In essence, there is no distinction between the two attributes,
and a principal-components analysis should tell us that there is really only one attribute.
In this situation, the population matrix has the form

X =

x1 x1

x2 x2
...

...

 ,

where there are N rows and the xs take on values ±1. The identity of the two columns
expresses the complete correlation of the two attributes. We assume that there are an equal
number of +1s and −1s in each column, realizing that in a real population, there would
be fluctuations about this condition that we would have to worry about in our analysis.
The correlation matrix,

C =
1

N
XTX =

(
1 1
1 1

)
,

has eigenvectors

|u1⟩ =
1√
2

(
1
1

)
, eigenvalue λ2

1 = 2 ,

|u2⟩ =
1√
2

(
1
−1

)
, eigenvalue λ2

2 = 0 .
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Now we have

√
2N |n1⟩ = X|u1⟩ =

√
2N

1√
N

x1

x2
...

 ,

X|u2⟩ = 0 .

The values of the new attributes are yn,1 =
√
2xn and yn,2 = 0, confirming that there is

really just one attribute.
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