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Homework Problem 1.6

Shannon information and yes/no questions. In this problem, we formulate a
rigorous way of thinking of the Shannon information as the number of yes/no questions
required to identify a particular alternative.

Consider a random variable X that can take on values xj , j = 1, . . . , D, and let
pj = pX(xj) be the probability for xj . Imagine a sequence of yes(1)/no(0) questions, at
the termination of which one identifies a particular value of X. The sequence of questions
and their ultimate answers can be depicted as a binary tree, an example of which is shown
on the left of the figure below for a case of four values. A (potential) branch point is called
a node, a path descending from a node is a branch, and a terminal node is a leaf. Each
alternative thus sits at a leaf. The sequence of answers leading to a leaf is a code word for
the value at that leaf. For the tree on the left, the four code words are c1 = 0, c2 = 100,
c3 = 101, and c4 = 11. The entries within each code word are called letters.

I am in the habit of drawing trees with the branches extending downward, which means the
branches might better be called roots. My way does have the advantage that descendants of
nodes actually descend.

The collection of code words is called a prefix-free code, because by construction no
code word is a prefix of any other code word. The prefix-free property guarantees that in a
message consisting of a sequence of code words, each code word can be decoded as soon as
it is identified, without having to worry that some other code word has the identified code
word as a prefix. For this reason prefix-free codes are also called instantaneous codes. In
a message in an instantaneous code, there is no need for an additional symbol to separate
code words, like the space in ordinary English text.

The code word for xj has length ℓj , which is the number of yes/no questions leading
to xj . For the tree on the left, we have ℓ1 = 1, ℓ2 = 3, ℓ3 = 3, and ℓ4 = 2. The longest
length in a code is the order L of the tree.

A full tree of order L is a tree that has 2L leaves, all of length L. The full tree of
order L = 3 is shown in the middle of the figure. Any tree can be extended to a full tree.



Given a particular tree, the number of descendants leaf j has in the full-tree extension of
order L is 2L−ℓj . The quantity qj = 2−ℓj is the fraction of leaves in a full-tree extension
that descend from leaf j, and it is also the sum of the q-values for those descendants.

We are now ready to formulate the condition for a prefix-free code: There is a prefix-
free code with code-word lengths ℓj, j = 1, . . . , D, if and only if

Q =

D∑
j=1

qj =

D∑
j=1

2−ℓj ≤ 1 .

The inequality Q ≤ 1 is called the Kraft inequality.

Since Q is a fraction of the leaves in a full-tree extension, it is clear that Q ≤ 1 for a
prefix-free code. What remains is to show that if Q ≤ 1, then a prefix-free code exists. To
show this, order the code-word lengths from biggest to smallest, i.e., ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓD.
Consider the quantity

Qk =
k∑

j=1

qj =
k∑

j=1

2−ℓj .

For k < D, it is clear that Qk is strictly less than 1. Moreover, the binary expansion
of Qk terminates after ℓk digits, so Qk ≤ 1 − 2−ℓk for k < D. We assign code words
of appropriate length successively, and we know we can do this for the following reason.
After assigning the first k − 1 ≤ D − 1 code words, the number of unassigned code words
of length ℓk is

2ℓk − 2ℓk−ℓ1 − 2ℓk−ℓ2 − · · · − 2ℓk−ℓk−1 = 2ℓk(1−Qk−1) ≥ 2ℓk2−ℓk−1 ≥ 1 ,

thus allowing us always to find the needed code word of length ℓk.

If Q = 1, the tree is called a complete tree; if Q < 1, an incomplete tree. An incomplete
tree can always be completed in the following way. The fraction Q has a binary expansion
that terminates after L digits, meaning that Q = 1−n2−L, where n is an integer. We add
n code-word lengths L to the list of code-word lengths in the incomplete tree. The proof
of the Kraft inequality shows that we can find n additional code words of length L, thus
completing the tree.

Enough of introduction. Let’s turn now to the average code-word length—i.e., the
average number of yes/no questions—given probabilities pj :

ℓ =

D∑
j=1

pjℓj .

(a) Show that the average code-word length satisfies

ℓ ≥ H(p) .



(b) Show that it is possible to find code words such that

ℓ < H(p) + 1 .

Unless you do something really clever, the code you introduce to prove this is called a
Shannon-Fano code.

The slop of 1 bit in the relation between average number of yes/no questions and Shan-
non information is clearly due to the mismatch between the qj ’s, which are inverse powers
of 2, and the probabilities, which generally aren’t. We can get a tight relation between
Shannon information and the number of yes/no questions by considering N trials drawn
from the distribution p. Now there are DN alternatives, and the Shannon information for
the N trials is NH(p). The average code-word length satisfies

DN∑
j=1

pjℓj ≥ NH(p) ,

so the average code-word length per trial is bounded below as for a single trial,

1

N

DN∑
j=1

pjℓj ≥ H(p) ,

but there exists a code satisfying

DN∑
j=1

pjℓj ≥ NH(p) + 1 ,

which gives an average code-word length per trial such that

1

N

DN∑
j=1

pjℓj ≥ H(p) +
1

N
.

In the limit N → ∞, we obtain a tight relation between the average code-word length per
trial and the Shannon information.

Of course, when N is large, the law of large numbers guarantees that in each realiza-
tion, the code-word length per trial is nearly certainly the average code-word length per
trial, so this becomes a particular form of block coding.

An optimal code is one that minimizes the average length ℓ =
∑

j pjℓj . It turns out
that an optimal code can be constructing using a procedure called Huffman coding. Codes
other than Huffman codes can be optimal, but you will show below that they can never
have shorter average length than a Huffman code.

Here’s how Huffman coding works. Take the two least likely alternatives, and make
the last letter in their code words 0 and 1. Now amalgamate these two alternatives into



a single alternative whose probability is the sum of the probabilities for the two original
alternatives. Repeat the process for this new situation. A particular case of Huffman
coding is illustrated in the figure below.

Huffman code for five alternatives with probabilities 0.29, 0.25, 0.20, 0.18, and 0.08. The figures
in parentheses are probabilities. The average code-word length is 2.26.

(c) Show that Huffman coding is optimal, i.e., that no code has an average code-word
length smaller than that for Huffman coding. (Hint: There are many ways to do this, but
one way is first to show that any optimal code can be converted to an equivalent optimal
code in which the two least likely alternatives have code words of the same (maximum)
length, these two code words differing only in the final letter. This allows you to show that
any optimal code can be converted to a code constructed by the Huffman procedure.)


