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This document provides an introduction to the polar decomposition, the singular-value decom-
position, and Autonne-Takagi factorization of symmetric matrices, with an emphasis on how all of
these are close to the same thing once one thinks about operators instead of their representations.

We begin by reviewing the polar decomposition and the singular-value decomposition, since Autonne-Takagi fac-
torization is a special case of these.

Polar decomposition. Given a linear operator M , the polar decomposition starts with the positive operators
√
M†M

and
√

MM†. These two positive operators have the same (real, nonnegative) eigenvalues, denoted as λj . The

eigenvalues of M†M and MM† are the squares, λ2
j . If we let |ej⟩ and |fj⟩ be (orthonormal) eigenvectors of

√
M†M

and
√
MM†, respectively, with |ej⟩ and |fj⟩ having the same eigenvalue λj , we have√

M†M =
∑
j

λj |ej⟩⟨ej | , (1)

√
MM† =

∑
j

λj |fj⟩⟨fj | . (2)

Now we notice that MM†(M |ej⟩) = M(M†M |ej⟩) = λ2
jM |ej⟩, so M |ej⟩ is an eigenvector of MM† with eigenvalue

λ2
j . Thus, for eigenvectors |ej⟩ in the support ofM†M , i.e., for which λj ̸= 0, we define |fj⟩ ≡ M |ej⟩/λj ; this definition

imposes a natural and unique way of pairing up eigenvectors |ej⟩ and |fj⟩ in degenerate subspaces and of phasing

all the eigenvectors |fj⟩. For eigenvectors |ej⟩ in the null subspace of M†M , we can start with any orthonormal

eigenvectors in the null subspace of M†M and pair them up with any choice of orthonormal eigenvectors in the null

subspace of MM†. With these choices, we can write

M |ej⟩ = λj |fj⟩ ⇐⇒ M =
∑
j

λj |fj⟩⟨ej | , (3)

M†|fj⟩ = λj |fj⟩ ⇐⇒ M† =
∑
j

λj |ej⟩⟨fj | ; (4)

The eigenvalues λj are called the singular values of M , and the eigenvectors |ej⟩ and |fj⟩ are called the right and left
singular vectors.
Letting U be the unitary operator that transforms between the two eigenbases, i.e.,

U |ej⟩ = |fj⟩ ⇐⇒ U =
∑
j

|fj⟩⟨ej | , (5)

we have that U transforms between the two positive operators, i.e.,

U
√
M†MU† =

√
MM† . (6)

This leads us to the polar decomposition,

M = U
√
M†M =

√
MM†U , (7)

M† =
√
M†MU† = U†

√
MM† . (8)
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The unitary operator U is unique if M†M is invertible (i.e., all the eigenvalues λ2
j are nonzero). This is clear from

the construction of the polar decomposition; moreover, when M†M is invertible, we have U = M(M†M)−1/2.

For a Hermitian operator H, with eigenvalues hj and eigenvectors |ej⟩, we have
√
H†H =

√
H2 = |H|, i.e.,

λj = |hj |; the only role of the unitary U in the polar decomposition is to insert a sign change for negative eigenvalues
of H:

U =
∑
j

sign (hj)|ej⟩⟨ej | . (9)

A unitary operator U is its own polar decomposition. A normal operator N , i.e., N†N = NN†, has an eigendecom-

position N =
∑

j λje
iϕj |ej⟩⟨ej |, where the λjs are nonnegative, so√

N†N =
√
NN† =

∑
j

λj |ej⟩⟨ej | ; (10)

the role of the unitary U in the polar decomposition is to put the phases back in:

U =
∑
j

eiϕj |ej⟩⟨ej | . (11)

What distinguishes normal operators is that the unitary U and the positive operator
√
N†N in the polar decomposition

commute.

Singular-value decomposition. The singular-value decomposition is really the same thing as the polar decomposition,
the only difference being that there is a standard basis |j⟩ in which we want the singular values to appear in diagonal
form as

Λ =
∑
j

λj |j⟩⟨j| . (12)

By introducing a unitary operator V that maps from the standard basis to the eigenbasis |ej⟩, i.e., V |j⟩ = |ej⟩, we
can write √

M†M =
∑
j

λj |ej⟩⟨ej | = V ΛV † (13)

and thus put the polar decomposition in the form

M = WΛV † , (14)

where W = UV , with W |j⟩ = |fj⟩. Equation (14) is the singular-value decomposition. It is important to reiterate
that the only difference between the singular-value decomposition and the polar decomposition is that we want Λ to

be diagonal in a basis |j⟩ of our choosing, instead in the eigenbasis |ej⟩ of
√
M†M or the eigenbasis |fj⟩ of

√
MM†;

indeed, the only purpose of V is to do the map |ej⟩ = V |j⟩. Notice that in this construction, we have the freedom to
rephase the right singular vectors |ej⟩ or, equivalently, to multiply V on the right by a unitary that is diagonal in the
standard basis.

In the standard basis, the singular-value decomposition becomes

Mjk = ⟨j|M |k⟩ =
∑
l

⟨j|W |l⟩λl⟨l|V
†|k⟩ =

∑
l

⟨j|fl⟩λl⟨el|k⟩ , (15)

with ⟨j|W |l⟩ = ⟨j|fl⟩ and ⟨k|V |l⟩ = ⟨k|el⟩ being the unitary matrices that transform from the standard basis to the
singular vectors. The singular-value decomposition is usually stated directly in terms of matrices, i.e., the representa-
tions of operators in a standard basis, and this statement is that any matrix can be diagonalized by a pair of unitary
matrices.

Autonne-Takagi factorization. Autonne-Takagi factorization is usually stated in terms of a complex symmetric matrix;
if we wish to state it in terms of operators, we need a standard basis |j⟩ relative to which transposition and complex
conjugation are defined. Now let’s state precisely what we want to prove:
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If M = MT is a symmetric operator, relative to a standard basis |j⟩, there exists a unitary operator V such that

V TMV = Λ =
∑
j

λj |j⟩⟨j| , (16)

where the diagonal elements are the (real, nonnegative) singular values of M .

Notice that

M = V ∗ΛV † , (17)

which means that this is a special case of the singular-value decomposition where the diagonalizing unitaries are
complex conjugates of one another, i.e., W = V ∗. Translated to the polar decomposition, the unitary operator in the

polar decomposition becomes U = WV † = V ∗V † = (V V T )†.

Proof. Write M†M in diagonal form,

M†M =
∑
j

λ2
j |ej⟩⟨ej | , (18)

and let S be the unitary operator that maps between the eigenbasis and the standard basis relative to which we define
transposition and complex conjugation, i.e.,

S|j⟩ = |ej⟩ , (19)

and relative to which M is by assumption symmetric. Now we have

S†M†MS = Λ2 =
∑
j

λ2
j |j⟩⟨j| . (20)

Consider the manifestly symmetric operator

L = STMS = LT . (21)

One has

L†L = S†M†S∗STMS = S†M†MS = Λ2 and LL† = STMSS†M†S∗ = STMM†S∗ = (S†M†MS)∗ = Λ2 . (22)

Since L is normal, it is diagonal in an orthonormal basis, and these equations show that the diagonalizing basis is the
standard basis, so we have

L =
∑
j

λje
iϕj |j⟩⟨j| =

(∑
j

eiϕj |j⟩⟨j|
)
Λ =

(∑
j

eiϕj/2|j⟩⟨j|
)
Λ

(∑
j

eiϕj/2|j⟩⟨j|
)
. (23)

The second form is the polar decomposition of the normal operator L. The last form is the one we now use by writing

Λ =

(∑
j

e−iϕj/2|j⟩⟨j|
)
STMS

(∑
j

e−iϕj/2|j⟩⟨j|
)
. (24)

Defining

V = S

(∑
j

e−iϕj/2|j⟩⟨j|
)

=
∑
j

e−iϕj/2|ej⟩⟨j| (25)

completes the proof.

The unitaries S and V are nearly the same thing except for phasing. Indeed, if we rephase the right singular vectors,

|ẽj⟩ = e−iϕj/2|ej⟩ , (26)
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which we always have the freedom to do, we have

V =
∑
j

|ẽj⟩⟨j| (27)

and

M = V ∗ΛV † =
∑
j

λj |ẽ
∗
j ⟩⟨ẽj | . (28)

Thus one may think of the content of Autonne-Takagi factorization as the fact that for symmetric matrices, the left
and right singular vectors can be phased so that they are complex conjugates of one another, i.e., |f̃j⟩ = |ẽ∗j ⟩.


