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This is my take on WHZ’s derivation of the quantum probability rule. I worked this
out myself in December of 2003 after reading carefully WHZ’s PRL [1] but then found
that much of it had been anticipated by Schlosshauer and Fine [2] and by Barnum [3] in
their discussions of WHZ’s derivation. My assessment is perhaps harsher than either of
theirs, however, and pithier than Howard’s, which has the typical Howardian underbrush
of verbiage and caveats. The document was modified at the time of the Being Bayesian in
a Quantum World meeting in Konstanz, where I gave brief presentation based on it.

It is hard to tell from WHZ’s discussion whether he sees his derivation as justifying
the Born rule as the way for an observer to assign subjective probabilities or as the rule
for objective probabilities that adhere within a relative state. For example, in his PRL
discussion of a system-environment state in Schmidt form, WHZ comments, “Given the
state of the combined SE in Schmidt form—with complex αk and with {|σk〉} and {εk〉}
orthonormal—what sort of invariant quantum facts can be known about S?” The point of
his argument appears to be that the probabilities are invariant quantum facts, as opposed
to the phases of the coefficients αk, which are said to be unknown. On the other hand,
if he is after ontological probabilities, why would he begin the paper with a paraphrase
of Schrödinger, “One can know precisely the state of a composite object (consisting, for
example, of the system S and the environment E) and yet be ignorant of the state of
S alone,” and why, in the part of his argument that gets equal probabilities for equal
amplitudes, would he state, “When all of the coefficients of swapped states are equal, the
observer with access to S alone cannot detect the effect of the swap.” Mohrhoff [4] does a
good job of drawing attention to the philosophical inconsistencies in WHZ’s presentation.
I concentrate here on the details of the derivation, and I assume that WHZ is thinking in
terms of objective probabilities associated with relative states, as seems to be clear from
the abstract of his follow-on PRA [5], where he writes, “The probabilities derived in this
manner are an objective reflection of the underlying state of the system—they represent
experimentally verifiable symmetries, and not just a subjective ‘state of knowledge’ of the
observer.”

What WHZ would like to do is the following. He wants to find the probability
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pA

(
j; {|ak〉}, |ψA〉

)
for outcome j associated with an orthonormal basis {|ak〉} when sys-

tem A has state vector |ψA〉. (We use this very pedantic notation to be sure that we don’t
lose track of any of any dependencies that might be important on the way to the standard
rule.) Thus he clearly assumes the standard Hilbert-space structure of pure states and
quantum questions as rays in Hilbert space. The state vector is expanded in the outcome
basis as

|ψA〉 =
∑

k

αk|ak〉 .

He begins with the further assumption that the very notion of “outcomes”—in the
language of measurement theory, the notion of a measurement with these outcomes—
means that the system interacts via a unitary U with an “environment” B, which begins
in a standard state |e0〉, in such a way that after the system and environment interact, the
overall state takes the Schmidt form

U |ψA〉 ⊗ |e0〉 = |ΨAB〉 =
∑

k

αk|ak〉 ⊗ |bk〉 ,

with the environment states |bk〉 being orthonormal. (For any interaction, one can write a
relative-state decomposition based on the systen states |ak〉, but the relative environment
states are not generally orthogonal.) Thus he further assumes the tensor-product structure
for composite systems and that unitaries describe quantum dynamics. Notice that what
I am saying is that in WHZ’s approach, it is the Schmidt relative state that defines the
notion of outcomes for system A; without the entanglement with system B, one cannot
even talk about outcomes for the basis {|ak〉}.

It is built into this discussion—built into the formulation at the most fundamental
level—that WHZ also assumes that the probabilities don’t depend on the environmental
basis |bk〉 that becomes “correlated” with the outcome basis, because it has already been
assumed that the probabilities that he is seeking, pA

(
j; {|ak〉}, |ψA〉

)
, have no dependence

on the environmental states |bk〉. This is a kind of foundational noncontextuality assump-
tion that underlies the whole approach. I will call it environmental noncontextuality (EN)
for lack of a better name. Let’s give him all the assumptions made up till now.

Further unitary evolution of the environment after the interaction does not change the
probabilities. This is not really an additional assumption because all such a unitary can
do is to change the orthonormal environment states |bk〉, and it’s already been assumed
that this basis doesn’t affect the probabilities. It does, however, allow us to rewrite the
desired probability as

pA

(
j; {|ak〉}, |ψA〉

)
= F

(|aj〉; |ΨAB〉
)

.

Here F is a function of (i) joint AB pure states whose Schmidt decomposition picks out the
outcome basis on A and (ii) a vector in the outcome basis. The function has the property

F
(|aj〉; |ΨAB〉

)
= F

(|aj〉; 1A ⊗ UB |ΨAB〉
)

;

i.e., F is constant on the equivalence classes of joint pure states defined by the action of
unitaries UB on system B. This is assumption (4) of Schlosshauer and Fine, and Howard
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calls this the no-signalling assumption, because changes in the probabilities at A as a
consequence of actions taken at B could be used to send signals. This assumption is the
expression of what we called EN above, but it is a neat way to write EN and tease out its
consequences.

Now we’re ready to introduce WHZ’s concept of envariance: |ΨAB〉 is envariant under
a unitary UA on A if the effect of UA on |ΨAB〉 can be compensated by a unitary UB on
B, i.e., UA⊗UB |ΨAB〉 = |ΨAB〉. We see immediately that for an envariant transformation
UA,

F
(|aj〉; |ΨAB〉

)
= F

(|aj〉;UA ⊗ UB |ΨAB〉
)

= F
(|aj〉; UA ⊗ 1B |ΨAB〉

)
,

or translated to probabilities,

pA

(
j; {|ak〉}, |ψA〉

)
= pA

(
j; {UA|ak〉}, UA|ψA〉

)
.

WHZ wants to view envariance as the key to his derivation, but it is just a way to write
the consequences of EN, when they provide any useful constraints, in terms of system
unitaries, instead of environment unitaries. It turns out not to be necessary to translate
EN to system unitaries for any of the steps in the derivation.

WHZ uses envariance, however, to draw his first big conclusion. A unitary UA that is
diagonal in the outcome basis, i.e., that introduces phases in the outcome basis, is envariant
because it can be compensated by a UB that introduces the opposite phases in the |bj〉
basis. This implies, of course, that the probabilities p(j; {|ak〉}, |ψA〉) are independent of
the phases of the amplitudes αk. Though this is an important conclusion, it is, within the
assumptions, a recognition of the ambiguity in where phases are placed in the Schmidt
decomposition (i.e., in the amplitudes or in the states) and thus is a direct consequence of
EN, without the need to invoke envariance.

Now we get to the more important use of envariance, the case where several of the
amplitudes αk have the same magnitude. The objective is to use envariance to show that
the corresponding probabilities are equal. This result in hand, one is off and running
with well developed techniques to get the standard quantum rule, although we will want
to examine carefully the justification of these well developed techniques in the present
context. The method is illustrated without loss of generality by assuming that there are
only two outcome states, |0〉 and |1〉, and that the system state is |ψA〉 = (|0〉 + |1〉)/√2,
with corresponding Schmidt state |ΨAB〉 = (|00〉+ |11〉)/√2. The unitary UA that swaps
|0〉 and |1〉 is envariant because it can be compensated by a counter-swap on system B.
So we have from envariance that

pA

(
0; {|0〉, |1〉}, |ψA〉

)
= F

(|0〉; |(|00〉+ |11〉)/
√

2
)

= F
(|0〉; |(|10〉+ |01〉)/

√
2
)

,

pA

(
1; {|0〉, |1〉}, |ψA〉

)
= F

(|1〉; |(|00〉+ |11〉)/
√

2
)

= F
(|1〉; |(|10〉+ |01〉)/

√
2
)

,

We want to get pA

(
0; {|0〉, |1〉}, |ψA〉

)
= pA

(
1; {|0〉, |1〉}, |ψA〉

)
, and one can see immediately

that the envariance-inspired relations by themselves aren’t going to help at all in reaching
this conclusion because they can never change the alternative under consideration from 0
to 1. All they say is that there are two different forms for each of these two probabilities,
without providing any connection between them. Moreover, notice that these relations
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follow directly from EN: they’re an immediate consequence of the formulating the notion
of outcomes and probabilities in terms of a Schmidt state.

We need a further assumption to get anywhere. We can exchange the roles of A and
B, imagining that we are trying to determine probabilities for “outcomes” j associated
with the basis {|bk〉} for system B in a state

|ψB〉 =
∑

k

αk|bk〉 .

Given the same formulation as for A, we can write the probabilities for the outcomes as

pB

(
j; {|bk〉}, |ψB〉

)
= G

(|bj〉; |ΨAB〉
)

,

where G plays the role of F . The assumption we need is that

F
(|aj〉; |ΨAB〉

)
= G

(|bj〉; |ΨAB〉
)

,

when the amplitudes αk have equal magnitudes. This is apparently WHZ’s “pedantic”
assumption in his PRL, which he gets by fiddle-faddling around because he hasn’t given
a precise mathematical formulation of what he’s doing (you won’t find in his paper any
equations that spell out explicitly how the probabilities depend on the other mathematical
objects). This is assumption (3) of Schlosshauer and Fine, and Howard calls it the Perfect
Correlation Principle (PCP), which is what I will call it. It is another kind of noncontex-
tuality assumption, since F and G arise in entirely different contexts; PCP seems natural
because of the symmetry between A and B in the joint state |ΨAB〉. The point is that
WHZ’s derivation depends on an unstated assumption that one can interchange the roles
of systems A and B in the case of Schmidt states with amplitudes of equal magnitude. In
his PRA, WHZ has moved to asserting that he doesn’t need this assumption, but again
the reason is that he hasn’t given a precise mathematical formulation of what he is doing.

If we had the idea that F
(|aj〉; |ΨAB〉

)
and G

(|bj〉; |ΨAB〉
)

were marginal probabilities
for outcomes on the joint state, then we could justify PCP using fairly minimal assump-
tions. This way of thinking isn’t legal, because we’re trying to derive the probability rule
for A (or B) by mucking around with the joint system AB, so introducing any probabil-
ity concepts on AB is not allowed. Still, if we imagine that there is a joint probability
PAB

(|aj〉, |bk〉; |ΨAB〉
)
, whose marginals are F and G, then it is perhaps a very minimal

assumption to write
PAB

(|aj〉, |bk〉; |ΨAB〉
)

= 0 for j 6= k .

Assuming that F and G are the marginals of PAB , we get the desired equality immediately:

F
(|aj〉; |ΨAB〉

)
=

∑

k

PAB

(|aj〉, |bk〉; |ΨAB〉
)

= PAB

(|aj〉, |bj〉; |ΨAB〉
)

=
∑

k

PAB

(|ak〉, |bj〉; |ΨAB〉
)

= G
(|bj〉; |ΨAB〉

)
.
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Again, however, this line of argument is not legitimate, so any good feeling it attaches to
PCP should be discounted.

Now we can go back to our discussion of the two alternatives, and go straight to the
result, as do Schlosshauer/Fine and Barnum:

pA

(
0; {|0〉, |1〉}, |ψA〉

)
= F

(|0〉; (|00〉+ |11〉)/
√

2
)

(starting point)

= F
(|0〉; (|10〉+ |01〉)/

√
2
)

(envariance of swaps on A)

= G
(|1〉; (|10〉+ |01〉)/

√
2
)

(PCP)

= G
(|1〉; (|00〉+ |11〉)/

√
2
)

(envariance of swaps on B)

pA

(
1; {|0〉, |1〉}, |ψA〉

)
= F

(|1〉; (|00〉+ |11〉)/
√

2
)

(PCP) .

When you examine this string of equalities carefully, you find that the portrayal of envari-
ance as the key assumption is just an artful dodge. The two envariance steps come directly
from EN, without detouring through envariance, and EN is an underlying noncontextuality
assumption. The two PCP steps are just as critical, and they are also noncontextuality as-
sumptions. Both Schlosshauer/Fine and and Howard are onto this, in somewhat different
language.

WHZ goes on to a standard argument that gets one from equal probabilities in the
equal amplitude case to the general quantum probability rule for unequal amplitudes.
Schlosshauer and Fine let him off the hook completely on this further argument, and
Howard only comments about the need for a continuity assumption to get away from
rational probabilities. My initial inclination was also to let him off the hook, but I now
think there is a real question about this further argument, having nothing to do with
continuity.

We’ll consider only the two-outcome version of the argument, which goes as follows.
The state of system A is |ψA〉 = α|0A〉 + β|1A〉, where we assume that |α|2 = m/M is
rational or can be sufficiently well approximated by a rational approximation. We imagine
that in the correlated state that defines the notion of outcomes,

|ΨAB〉 = α|0A〉 ⊗ |0B〉+ β|1A〉 ⊗ |1B〉 ,

the two states of system B can be written as

|0B〉 =
1√
m

m∑

l=1

|bl〉 and |1B〉 =
1√

M −m

M∑

l=m+1

|bl〉 .

This requires, of course, that B have at least M dimensions, in which case one can always
find a basis in which |0B〉 and |1B〉 have the desired form. The joint state of systems A
and B assumes the form

|ΨAB〉 =
m∑

l=1

α√
m
|0A〉 ⊗ |bl〉+

M∑

l=m+1

β√
M −m

|1A〉 ⊗ |bl〉 ,
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which leaves all expansion coefficients with the same magnitude, 1/
√

M . One can argue
about this approach in any context where it is used, but here we’re only interested in its
use within WHZ’s derivation.

To fit the state into his derivation, what he does is to say that now we have to imagine
that there is yet another system, C, that interacts with the first two systems in such a way
that the final state of all three systems is of the desired Schmidt form:

|ΨABC〉 =
m∑

l=1

α√
m
|0A〉 ⊗ |bl〉 ⊗ |cl〉+

M∑

l=m+1

β√
M −m

|1A〉 ⊗ |bl〉 ⊗ |cl〉 .

This step is necessary to define the notion of the outcomes 0l and 1l for systems A and B.
WHZ uses his previous work, applied to AB vs. C, to conclude that the outcomes jl have
equal probabilities, given by 1/M , and thus that the probability for outcome 0 is

pA

(
0; {|0A〉, |1A〉}, |ψA〉

)
=

m∑

l=1

pAB(0l; {|jA〉 ⊗ |bl〉}, |ΨAB〉) =
m∑

l=1

1
M

=
m

M
= |α|2 ,

which, modulo the continuity assumption, gets him the standard quantum rule.
But let’s think about this for a minute. We were originally told that the very notion of

outcomes for system A required us to think about a joint pure state with the appropriate
Schmidt decomposition. Now we’re told that the notion of outcomes requires us to think
about a much more complicated three-system joint state, where the two additional systems
must have a dimension big enough to accommodate the rational approximation to the
desired probabilities. Does this mean the notion of outcomes depends on the value of the
amplitudes? This is a very unattractive alternative, so what we really must think is that
for all amplitudes, the notion of outcomes requires us to think in terms of a big three-
system joint state, where B and C have arbitrarily large dimensions. We’re now supposed
to believe that the notion of outcomes for system A requires us to think in terms of two
other systems correlated in a particular way, which has no apparent relation to the number
of outcomes of system A. Even a relative-state believer would find this hard to swallow,
and it makes the PCP assumption far less natural, because this construction wrecks the
nice-looking symmetry between A and the systems to which it is coupled and even between
AB and C. It is a heck of a lot less attractive than the original picture we were presented
and really should have been stated at the outset.

In the end one is left wondering what makes the envariance argument any more com-
pelling than just asserting that a swap symmetry means that a state with equal amplitudes
has equal probabilities and then moving on to the argument that extends to rational am-
plitudes.
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