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The following is taken from E. T. Jaynes, “Monkeys, kangaroos, and N,” in Maximum
Entropy and Bayesian Methods in Applied Statistics, edited by J. H. Justice (Cambridge
University Press, Cambridge, England, 1986), pages 26-58 (Proceedings of the Fourth
Maximum Entropy Workshop, University of Calgary, August 1984).

Consider a quantity with N alternatives and prior probability on probabilities,
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Normalization of P(p) on the probability simplex gives
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where the integration measure on the simplex is
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and where the d-function restricts the integral to the simplex even though the integrals
run from 0 to co. Thus the normalization constant is given by
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where B(k) is the beta function
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To evaluate the beta function, consider the integral
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Making the change of variables p; = x;/a and defining K = ky + - - - k,,, we can write
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Integrating over e™“ gives

But now notice that
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Thus we find that the beta function is given by
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The resulting normalized probability on probabilities is
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Notice that P(p) is normalizable if and only if all the ks are positive. When all the ks
are equal to 1, P(p) is the uniform distribution on the simplex, and the normalization
constant A = (N — 1)!/4/N is the inverse of the volume of the probability simplex. It is
useful to define
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In L trials, the probability for occurrence numbers ni,...ny =

ties p, is the binomial distribution
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Hence, the unconditioned probability for n is given by
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The probability for any sequence with occurrence numbers n is
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where we use I'(x + 1) = zI'(z).
In particular, notice that
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Thus the covariance matrix of the probabilities is given by
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Of particular interest are the limits where K goes to zero and infinity. When K goes
to zero [even though P(p) can’t be normalized in this limit, we can, nonetheless, extract
meaningful results], we use the fact that I'(z) — 1/z when z — 0 to find
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This means that the only sequences that have nonzero probability are those in which all the
trials yield exactly the same result, the jth of these possibilities occurring with probability
gj. Thus, when K — 0, P(p) describes a mixture of N probability distributions, the jth
of which, occurring with probability g;, gives alternative j with certainty. The first trial
determines which alternative applies, and all subsequent trials yield the same result as the
first.

When K goes to infinity, we find
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which means that P(p) becomes a d-function centered at p = g. It is useful to exhibit
explicitly the asymptotic behavior of P(p) when K becomes large. Using the Stirling
formula, we find that
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Assuming that g and p are nearly the same, we can make the further Gaussian approxi-
mation, giving
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The Gaussian approximation is valid everywhere that the argument of the exponent is
small, a region that, because K is large, contains essentially all of the probability. It is
easy to verify that the Gaussian is normalized to unity on the probability simplex, provided
we are allowed to extend the integration to negative values of each p; on the grounds that
the Gaussian is so localized that this extension makes a negligible difference. This allows
us to say that
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We now turn to what happens when we use the results of the first L trials to update
the probability on probabilities. Bayes’s theorem gives
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The Bayesian updating simply updates the prior ks to new values k; = n; + k;. Defining
the observed frequencies

n.
one can define updated gs by
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The updated g;- is a weighted mean of the prior g; and the observed frequency f;. The
weights L/(L + K) and K/(L + K) determined literally how much weight to put on the
prior information and how much on the observed frequencies. The value of K characterizes
how many trials are necessary so that the data starts to have an impact on the prior
distribution. If k; > n;, j = 1,...,N, then P(p | n) is essentially unchanged from
the prior beta distribution, whereas if n; > k;, 7 = 1,..., N, then P(p | n) is a beta
distribution determined by the observed occurrence numbers n;.

It is easy to calculate the probability for occurrence numbers my,...,my = m in M
trials, conditioned on the occurrence numbers n for the first L trials:
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The probability for any sequence with occurrence numbers m, given n in the first L trials,
is
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In particular, notice that
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Since (pj)n is the probability to obtain alternative j in the (L + 1)th trial, given the
results of the first L trials, Eq. (29) is a generalized version of the famous Laplace rule of
succession. Laplace’s original formulation assumed a uniform prior, i.e., all the ks equal
to1,s0o K = N and g; = 1/N, in which case we have
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Gamma function and Stirling formulas
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Relative entropy: H(g||p) = Zgg Inp; = Zgj In(g;/p;) =0
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Fourier transform of a Gaussian
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Multi-dimensional Gaussians
Let
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be an N x N real symmetric matrix, diagonalized by the orthogonal matrix O;; and having
positive eigenvalues )\;. We have
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where

If we let
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we can take the limit A — oo to get a multi-dimensional § function:
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