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The material herein will be used in two papers, the first on a hidden-variable model for

continuous-variable teleporation (by K. Wodkiewicz and CMC) and the second on teleportation
fidelity as a probe of sub-Planck structure (by A. Scott and CMC).

1. The general scenario

The scenario in continuous-variable teleportation is the following. Alice has a mode with
annihilation operator a = (xA + ipA)/

√
2, and Bob has a mode with annihilation operator b =

(xB + ipB)/
√

2. We generally let α = (α1 + iα2)/
√

2 and β = (β1 + iβ2)/
√

2 denote corresponding
c-number variables for these modes. These two modes are prepared in a joint quantum state
ρAB that has Wigner function WAB(α, β). Victor brings up to Alice a mode with annihilation
operator v = (xV + ipV )/

√
2 [c-number variable ν = (ν1 + iν2)/

√
2]. Victor’s mode is prepared

in an input state ρ = |ψ〉〈ψ| that has Wigner function Wρ(ν). The overall Wigner function is
Wρ(ν)WAB(α, β).

Alice measures
v + a† =

1√
2
(xV + xA)

︸ ︷︷ ︸
= X

+i
1√
2
(pV − pA)

︸ ︷︷ ︸
= P

(1)

on modes v and a. We denote the c-number variable corresponding to v + a† by

ξ = ν + α∗ =
1√
2
(ν1 + α1) +

i√
2
(ν2 − α2) . (2)

The probability density for getting result ξ is

p(ξ) =
∫

d2ν d2α d2β δ(ν + α∗ − ξ)Wρ(ν)WAB(α, β)

=
∫

d2ν d2β Wρ(ν)WAB(ξ∗ − ν∗, β)

=
∫

d2ν Wρ(ν)WA(ξ∗ − ν∗) ,

(3)

where WA(α) is the marginal Wigner function for mode a, and the state of Bob’s mode after the
measurement, conditioned on result ξ, has Wigner function

W ′(β| ξ) =
1

p(ξ)

∫
d2ν d2α δ(ν + α∗ − ξ)Wρ(ν)WAB(α, β)

=
1

p(ξ)

∫
d2ν Wρ(ν)WAB(ξ∗ − ν∗, β) .

(4)

Alice now sends the measurement result ξ to Bob, who displaces his mode by this amount,
i.e., xB is displaced by

√
2X and pB is displaced by

√
2P , giving an output state ρout(ξ) with

Wigner function

Wout(β| ξ) = W ′(β − ξ| ξ) =
1

p(ξ)

∫
d2ν Wρ(ν)WAB(ξ∗ − ν∗, β − ξ) . (5)
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This state averages to

ρout =
∫

d2ξ p(ξ)ρout(ξ) , (6)

which has Wigner function

Wρout
(β) =

∫
d2ξ p(ξ)Wout(β| ξ)

=
∫

d2ν Wρ(ν)
∫

d2ξ WAB(ξ∗ − ν∗, β − ξ)

=
∫

d2ν Wρ(ν)
∫

d2α WAB(α, β − ν − α∗)

=
∫

d2ν P (β − ν)Wρ(ν)

=
∫

d2ν P (ν)Wρ(β − ν) ,

(7)

where
P (ν) =

∫
d2α WAB(α, ν − α∗) =

∫
d2α d2β δ(β + α∗ − ν)WAB(α, β) (8)

is the probability to obtain result ν in a measurement of

b + a† =
1√
2
(xB + xA) +

i√
2
(pB − pA) (9)

on modes a and b.
Since Wρ(β − ν) is the Wigner function for the displaced state D(v, ν)ρD†(v, ν), i.e.,

WD(v,ν)ρD†(v,ν)(β) = Wρ(β − ν) , (10)

we can write the average output state (6) as

ρout =
∫

d2ν P (ν)D(b, ν)ρD†(b, ν) , (11)

where we now regard the initial state ρ as a state of Bob’s mode. We now have two different
ensemble decompositions for ρout: Eq. (6) gives ρout in terms of an average over the teleported
states ρout(ξ), whereas Eq. (11) gives ρout in terms an average over displaced input states.

One can see more directly the relation between the two decompositions by defining new
variables

ν ≡ β + α∗ =
1√
2
(β1 + α1) +

i√
2
(β2 − α2) ,

µ ≡ 1
2
(β − α∗) =

1
2
√

2
(β1 − α1) +

i

2
√

2
(β2 + α2) ,

(12)

and defining the normalized conditional quasidistribution

R(µ| ν) ≡ WAB(α, β)
P (ν)

. (13)
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This allows us to rewrite Eq. (5) in the form

Wout(β|ξ) =
1

p(ξ)

∫
d2ν Wρ(ν)P (β − ν)R

(
(β + ν)/2− ξ|β − ν

)

=
1

p(ξ)

∫
d2ν Wρ(β − ν)P (ν)R(β − ξ − ν/2| ν) ,

(14)

giving

p(ξ) =
∫

d2β Wout(β|ξ)p(ξ) =
∫

d2β d2ν Wρ(β − ν)P (ν)R(β − ξ − ν/2| ν) (15)

and
Wρout

(β) =
∫

d2ξ p(ξ)Wout(β| ξ)

=
∫

d2ν Wρ(β − ν)P (ν)
∫

d2ξ R(β − ξ − ν/2| ν)

=
∫

d2ν Wρ(β − ν)P (ν) .

(16)

The decomposition (11) turns out to be the more useful decomposition even though the states
in the decomposition are not the teleported states. It is easy to see that if the initial state |ψ〉 is
displaced, the average output state ρout is displaced by the same amount. If P (ν) is even under
parity, i.e., P (−ν) = P (ν), the average output state can be written as

ρout =
∫

d2ν P (ν)D(b,−ν)ρD†(b,−ν) =
∫

d2ν P (ν)D†(b, ν)ρD(b, ν) . (17)

If P (ν) is a function only of |ν|, a rotation of the input state leads to the same rotation of ρout.
For outcome ξ, the fidelity of the output state with the input state is

Fξ = 〈ψ|ρout(ξ)|ψ〉 . (18)

Thus the average fidelity is given by

F =
∫

d2ξ p(ξ)Fξ = 〈ψ| ρout|ψ〉 =
∫

d2ν P (ν)|〈ψ|D(b, ν)|ψ〉|2 . (19)

The symmetrically ordered characteristic function for ρout is

Φρout
(µ) = tr

(
ρoutD(b, µ)

)

=
∫

d2ν P (ν)tr
(
ρ D†(b, ν)D(b, µ)D(b, ν)︸ ︷︷ ︸

= D(ν, µ)D(b, µ)

)

= Φρ(µ)
∫

d2ν P (ν)D(ν, µ)

= πP̃ (µ)Φρ(µ) ,

(20)
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where P̃ (µ) is the Fourier transform of P (ν). This result is the Fourier transform of the corre-
sponding Wigner function relations in Eq. (7).

This leaves us with a variety of forms for the average fidelity:

F =
∫

d2ν P (ν)|Φρ(ν)|2

= π

∫
d2β Wρout

(β)Wρ(β) = π

∫
d2β d2ν P (β − ν)Wρ(β)Wρ(ν)

=
∫

d2µ

π
Φ∗ρout

(µ)Φρ(µ) =
∫

d2µ P̃ (µ)|Φρ(µ)|2

= π

∫
d2β d2ν P̃ (β − ν)Wρ(β)Wρ(ν) .

(21)

The first form is just a rewrite of Eq. (19). The second line comes from rewriting F = 〈ψ|ρout|ψ〉
as an overlap of the input and output Wigner functions, Wρout

(β) and Wρ(β), and then using
Eq. (7) for Wρout

(β). Similarly, the third line comes from rewriting F = 〈ψ|ρout|ψ〉 as an overlap
of the input and output characteristic functions, Φρout

(µ) and Φρ(µ), and then using Eq. (20) for
Φρout

(µ). The second and third lines are related to one another by a Fourier transform of the
quantities in the integrand, as are the first and last lines.

2. Squeezed-state teleportation

We do a good job of teleporting when the distribution P (ν) is narrow, i.e., when xA and xB

are tightly anti-correlated, and pA and pB are tightly correlated. Introducing modes

c =
1√
2
(a + b) =

1√
2
(xC + ipC)

d =
1√
2
(a− b) =

1√
2
(xD + ipD)

xC =
1√
2
(xA + xB)

pC =
1√
2
(pA + pB)

xD =
1√
2
(xA − xB)

pD =
1√
2
(pA − pB)

, (22)

with c-number variables γ = (α+β)/
√

2 = (γ1+iγ2)/
√

2 and δ = (α−β)/
√

2 = (δ1+iδ2)/
√

2, we
see that we want the variances of xC and pD to be small. Thus a natural choice is to use squeezed
vacuum states for modes c and d, with the variances of the quadrature components given by

(∆xC)2 =
1
2

e−2r (∆pC)2 =
1
2

e2r

(∆xD)2 =
1
2

e2r (∆pD)2 =
1
2

e−2r
. (23)

This state is a two-mode squeezed vacuum state for modes a and b. The Wigner function is given
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by

WCD(γ, δ) =
4
π2

exp
(
− γ2

1

e−2r
− γ2

2

e2r
− δ2

1

e2r
− δ2

2

e−2r

)

=
4
π2

exp
(
−2(|γ|2 + |δ|2) cosh 2r − [γ2 + γ∗2 − δ2 − δ∗2] sinh 2r

)

=
4
π2

exp
(
−2(|α|2 + |β|2) cosh 2r − 2(αβ + α∗β∗) sinh 2r

)
= WAB(α, β) .

(24)

Since P (ν) is the probability to obtain result ν in a measurement of

b + a† =
1√
2
(xB + xA) +

i√
2
(pB − pA) = xC − ipD , (25)

the Wigner function immediately implies that

P (ν) =
e2r

π
e−e2r|ν|2 =

2
πt

e−2|ν|2/t =⇒ P̃ (µ) =
1
π

e−e−2r|µ|2 =
1
π

es|µ|2/2 , (26)

where s = −2e−2r. We define t ≡ −s = 2e−2r for convenience since the only interesting values of
s are negative. Using the previous definitions (12), we have

ν = β + α∗ = γ1 − iδ2 µ =
1
2
(β − α∗) =

1
2
(−δ1 + iγ2) , (27)

and we can immediately write

WAB(α, β) =
4
π2

exp
(
e2r|ν|2 − 4e−2r|µ|2) =

e2r

π
ee2r|ν|2

︸ ︷︷ ︸
= P (ν)

4e−2r

π
e−4e−2r|µ|2

︸ ︷︷ ︸
= R(µ| ν) = R(µ)

. (28)

We can now specialize the important results of the preceding section to the case of squeezed-
state teleportation. The average output state (11) at Bob’s end becomes

ρout = e2r

∫
d2ν

π
e−e2r|ν|2D(b, ν)ρD†(b, ν) =

2
t

∫
d2ν

π
e−2|ν|2/tD(b, ν)ρD†(b, ν) . (29)

Recall that if the input state is displaced, ρout is displaced by the same amount. Because the
Gaussian is a function only of |ν|, we have that a rotation of the input state leads to the same
rotation of ρout and that

ρout =
2
t

∫
d2ν

π
e−2|ν|2/tD†(b, ν)ρD(b, ν) . (30)

The symmetrically ordered characteristic function for ρout is the s-ordered characteristic function
for ρ,

Φρout
(µ) = πP̃ (µ)Φρ(µ) = es|µ|2/2Φρ(µ) = Φ(s)

ρ (µ) , (31)
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and the Wigner function for ρout is the s-ordered quasidistribution for ρ,

Wρout
(β) = W (s)

ρ (β) =
∫

d2ν P (β − ν)Wρ(ν) =
2
t

∫
d2ν

π
Wρ(ν)e−2|β−ν|2/t . (32)

The various forms (21) for the average fidelity become

F ρ(t) =
2
t

∫
d2ν

π
e−2|ν|2/t|〈ψ|D(b, ν)|ψ〉|2

=
2
t

∫
d2ν

π
e−2|ν|2/t|Φρ(ν)|2

= π

∫
d2β W (s)

ρ (β)Wρ(β) =
2
t

∫
d2β d2ν e−2|β−ν|2/tWρ(β)Wρ(ν)

=
∫

d2µ

π
Φ(s)∗

ρ (µ)Φρ(µ) =
∫

d2µ

π
e−t|µ|2/2|Φρ(µ)|2

=
∫

d2β d2ν e−t|β−ν|2/2Wρ(β)Wρ(ν) .

(33)

The second and fourth forms (and the third and fifth) show us that

F ρ(t) =
2
t
F ρ(4/t) . (34)

We can relate these forms to Zurek’s work on sub-Planck structures [W. H. Zurek, Nature
412, 712 (2001)]. For a given input state ρ, the characteristic function Φρ(ν) has two important
scales: (i) a small scale ` over which, in some phase-space direction(s), it plunges from 1 at ν = 0
to close to zero and (ii) a large scale L over which it remains nonnegligible. These scales satisfy
`L ∼ 1. The Wigner function being the Fourier transform of the characteristic function, these
scales appear inversely in the Wigner function: (i) 1/L ∼ ` is the scale of the finest structure in
the Wigner function, and (ii) 1/` ∼ L is the scale over which the Wigner function is nonnegligible.

One way to display these scales is to consider the fidelity between the input state and the
output state (30), which is obtained from the input state by Gaussian phase-space displacements
of characteristic size

√
t/2 = e−r. The second form in Eq. (33) shows that to get high fidelity

between input and output, the scale of the displacements should satisfy
√

t/2 = e−r <∼ `; when this
is true, the fourth form in Eq. (33) re-assures us that the fidelity is near one, since

√
2/t = er >∼ L.

Thus the second and fourth forms express the reciprocal relation between ` and L. These same
conclusions can also be read off the Wigner-function forms of the fidelity. The third form in
Eq. (33) tells us that the fidelity is close to one as long as the scale of the phase-displacements
satisfies

√
t/2 = e−r <∼ `, whereas the last form in Eq. (33) assures us of high fidelity as long as√

2/t = er >∼ L.
These conclusions have an immediate interpretation in terms of high-fidelity teleportation.

To get good fidelity in the teleportation process, the two-mode squeezed state used as the en-
tanglement resource must have a small scale e−r =

√
t/2 somewhat smaller than the scale ` of

the finest phase-space structure in the state to be teleported, which also means that er =
√

2/t
is somewhat larger than the scale L over which the Wigner function is nonnegligible. To put it
succintly, good fidelity requires the squeezing to be large enough that the smallest sub-Planck
structures are teleported faithfully.
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3. A closer look at the teleported state in the high-fidelity limit

For the case of squeezed-state teleportation, we can get a better idea of what is going on by
taking a closer look at the probability (15) that Alice gets result ξ in her measurement,

p(ξ) =
∫

d2β d2ν Wρ(β − ν)P (ν)R(β − ξ − ν/2) (35)

and at the Wigner function (14) of the teleported state,

Wout(β|ξ) =
1

p(ξ)

∫
d2ν Wρ(β − ν)P (ν)R(β − ξ − ν/2) , (36)

As discussed above, high-fidelity teleportation is achieved when P (ν) is narrow enough that e−r

is small compared to the smallest-scale structure in the Wigner function, which also means that
er is large compared to the size of the region over which the Wigner function is nonnegligible.
In the limit of high-fidelity teleportation, where P (ν) is narrow and R(µ) is broad, we can get a
good approximation by setting ν = 0 and β = 〈v〉 in the broad Gaussian, which leaves us with

p(ξ) = R(〈v〉 − ξ) =
4e−2r

π
e−4e−2r| ξ−〈v〉|2 , (37)

Wout(β| ξ) =
∫

d2ν P (ν)Wρ(β − ν) . (38)

Thus, in the limit of high-fidelity teleportation, the output state ρout(ξ) is independent of the
measurement result ξ and is the same as ρout.

The high-fidelity limit can be described by a very simple model. The mean values of the
measurement results, X and P , are given by 〈X〉 = 〈xV 〉/

√
2 and 〈P 〉 = 〈pV 〉/

√
2, i.e, 〈ξ〉 = 〈v〉;

the corresponding variances are

〈(∆X)2〉 =
1
2

(
〈(∆xV )2〉+ 〈(∆xA)2〉

)
' 1

2
〈(∆xA)2〉 =

1
8
(e2r + e−2r) ' 1

8
e2r ,

〈(∆P )2〉 =
1
2

(
〈(∆pV )2〉+ 〈(∆pA)2〉

)
' 1

2
〈(∆pA)2〉 =

1
8
(e2r + e−2r) ' 1

8
e2r .

(39)

These means and variances are described by the probability distribution p(ξ) = R(ξ−〈v〉). With
the measurement results X and P in hand, we have that

xB = −xA +
√

2xC = xV −
√

2X +
√

2xC ,

pB = pA −
√

2pD = pV −
√

2P −
√

2pD .
(40)

Displacing xB by
√

2X and pB by
√

2P gives

xB = xV +
√

2xC ,

pB = pV −
√

2pD .
(41)
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Since the variances of
√

2xC and
√

2pD are both equal to e−2r, the convolution (38) describes the
output probability corresponding to the transformation (41).

We can estimate how much information must be transmitted to make continuous-variable
teleportation work with high fidelity. The possible values of X and P are distributed over a range
given roughly by the uncertainties in Eq. (39): ∆X = ∆P = er/2

√
2. The values of X and P

transmitted to Bob must allow him to perform displacements with accuracy somewhat better than
the uncertainties in xC and pD: ∆xC = ∆pD = e−r/

√
2. Thus the required number of bits in the

transmission of X or P must be roughly log(∆X/∆xC), giving a total amount of information of
order 2 log(∆X/∆xC) = 2 log(e2r/2) ' 4r/ ln 2. The squeeze parameter must be large enough to
teleport the smallest phase-space structures faithfully; i.e., e−r must be smaller than the smallest-
scale structure in the Wigner function of ρ. Calling this smallest scale L−1 = ` ∼ e−r, we have
that Alice must transmit roughly 2 log(1/2`2) ' 4 log(1/`) = 4 log L bits in order to transmit X
and P with sufficient accuracy for high-fidelity teleportation.

Since L2 is approximately the Hilbert-space dimension needed to represent ρ, the number
of bits needed has the standard form 2 log L2. Indeed, this gives us an independent, phase-space
way to interpret why we need 2 bits of classical information per qubit of quantum information.
The teleportation process must be able to distinguish (L/`)2 phase-space regions to transmit all
of the sub-Planck structure, and this means transmitting log(L/`)2 = log(L2)2 = 2 log L2 bits of
classical information.

4. Examples

All coherent states give the same average fidelity as the vacuum state, for which Φ|0〉〈0|(µ) =
〈0|D(b, µ)|0〉 = e−|µ|

2/2, so the coherent-state fidelity is

F coh(t) =
∫

d2µ

π
e−(1+t/2)|µ|2 =

1
1 + t/2

. (42)

All squeezed states with the same squeeze parameter u give the same average fidelity, so we
can calculate the fidelity for the squeezed vacuum state S(u, 0)|0〉, for which the characteristic
function is ΦS(u,0)|0〉〈0|S†(u,0)(µ) = e−(e2uµ2

1+e−2uµ2
2)/4, so the squeezed-state fidelity is

F sq(t) =
∫

d2µ

π
e−t|µ|2/2e−(e2uµ2

1+e−2uµ2
2)/2

=
∫

dµ1 dµ2

2π
e−(e2u+t/2)µ2

1/2e−(e−2u+t/2)µ2
2)/2

=
1√

(e2u + t/2)(e−2u + t/2)

=
1√

1 + t cosh 2u + t2/4
.

(43)

The average fidelity for an input number state, calculated in Section 6, is given by

F |n〉〈n|(t) =
(1− t/2)n

(1 + t/2)n+1
Pn

(
1 + t2/4
1− t2/4

)
, (44)

where Pn(x) is a Legendre polynomial.
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5. Hidden-variable model

Gaussian states are the only states that have nonnegative Wigner functions. For Gaussian
input states and for the two-mode squeezed vacuum state shared by Alice and Bob, the Wigner-
function description provides a hidden-variable model for teleportation: the hidden variables are
the quadrature components of all the modes, and the Wigner function is a probability distribution
for the hidden variables.

Non-Gaussian input states have Wigner functions that take on negative values. To get the
hidden-variable model to work, one imagines that Alice takes Victor’s input state ρ and kicks it
randomly in phase space, the probability distribution of the random kicks being described by a
Gaussian. The resulting state is

ρ′ =
2
t

∫
d2ν

π
e−2|ν|2/tD(v, ν)ρD†(v, ν) . (45)

The Wigner function of ρ′ is the s-ordered quasidistribution for ρ, i.e., Wρ′(ν) = W
(s)
ρ (ν). The

strength of the kicks, t, is chosen to be the minimum value that yields a nonnegative Wigner
function Wρ′(ν). For all non-Gaussian states, this minimum kicking strength is s = −1, meaning
that the new Wigner function is the Husimi Q function of the original state: Wρ′(ν) = W

(−1)
ρ (ν) =

Q(ν) = 〈ν|ρ|ν〉/π. The primed state having a nonnegative Wigner function, it, along with the
two-mode squeezed state used for teleportation, can be accommodated within the hidden-variable
model. To get a limit on the fidelity within the hidden-variable model, imagine that ρ′ is teleported
with perfect fidelity. Then the overall fidelity of the average output state with the input state ρ is
given by the overlap of the Wigner and Husimi Q functions of ρ, i.e., by the s = −1 fidelity (33)
(notice that higher kicking strengths would lead to higher values of t and thus to smaller fidelities,
so we want to use the minimum kicking strengths that yields a positive Wigner function).

These considerations, together with wanting to know the maximum teleportation fidelity for
a given amount of squeezing, motivate the following problem: Find the maximum value of the
average fidelity F ρ(t) over input pure states ρ = |ψ〉〈ψ|, especially for s = −1. Since the average
fidelity is the overlap of the Wigner function and the s-ordered quasidistribution for ρ, the task
can be restated as finding the pure state that maximizes this overlap. Within the hidden-variable
model, the maximum fidelity for s = −1 becomes a gold standard for quantum teleportation: If a
non-Gaussian input state is teleported with fidelity exceeding this maximum, it is guaranteed that
the teleportation cannot be described within a hidden-variable model based on the quadrature
components.

A direct approach to finding the maximum is to vary F − 2λ(〈ψ|ψ〉 − 1), giving

0 = 2〈δψ|ρout|ψ〉 − 2λ〈δψ|ψ〉+ h.c. , (46)

which implies that
ρout|ψ〉 = λ|ψ〉 = F |ψ〉 . (47)

Thus the condition for a fidelity extremum is that the input state be an eigenstate of the average
output state.

It is easy to see that if |ψ〉 satisfies the condition (47), then D(b, β)|ψ〉 and e−iθb†b|ψ〉 also
satisfy it. In particular, the vacuum state satisfies Eq. (47), since ρout is diagonal in the number
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basis, so all coherent states also satisfy it. I have long thought that the coherent states give the
maximum average fidelity, F coh(t) = (1 + t/2)−1, but I hadn’t made much progress in showing
this till 2003 March 7, when I constructed the (trivial) proof given at the end of this section.

The reason the eigenvalue equation (47) doesn’t provide a solution to the problem is that it
is nonlinear in |ψ〉, having come from minimizing a quantity that is quartic, instead of quadratic,
in the input state |ψ〉. As a consequence, the eigenvalue equation has many more solutions than
just an orthonormal set of states. In particular, we can easily see that all the number states
satisfy Eq. (47), because in this case, ρout is invariant under rotations and thus has number states
as eigenstates.

Trivial bounds on the average fidelity, coming from using

|Φρ(µ)|2 ≤ 1 and 1 = tr(ρ2) =
∫

d2µ

π
|Φρ(µ)|2 , (48)

are

F (t) =
∫

d2µ

π
e−t|µ|2/2|Φρ(µ)|2 ≤





∫
d2µ

π
e−t|µ|2/2 =

2
t∫

d2µ

π
|Φρ(µ)|2 = 1

. (49)

We get more useful information from the first two derivatives,

dF

dt
= −1

2

∫
d2µ

π
|µ|2e−t|µ|2/2|Φρ(µ)|2 < 0 , (50)

d2F

dt2
=

1
4

∫
d2µ

π
|µ|4e−t|µ|2/2|Φρ(µ)|2 > 0 , (51)

which together imply that F (t) is a strictly decreasing, strictly concave function of t.
Defining

I(x) ≡
∫

d2µ

π
e−x|µ|2 |Φρ(µ)|2 , (52)

we have
F (t) = I(t/2) = (2/t)I(2/t) , (53)

which leads us to Eq. (34). We can also write

F (t)
F coh(t)

= (1 + t/2)F (t) = F (t) + F (4/t) . (54)

In addition, we have

dF

dt
= −1

2

∫
d2β d2ν |β − ν|2e−t|β−ν|2/2Wρ(β)Wρ(ν) , (55)
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which implies

dF

dt

∣∣∣∣
t=0

= −1
2

∫
d2β d2ν |β − ν|2Wρ(β)Wρ(ν)

= −1
2

∫
d2β d2ν

(|β|2 + |ν|2 − βν∗ − β∗ν
)
Wρ(β)Wρ(ν)

= −1
2

(〈ψ|(b†b + bb†)|ψ〉 − 2|〈ψ|b|ψ〉|2)

= −1
2
(〈ψ|(∆xB)2|ψ〉+ 〈ψ|(∆pB)2|ψ〉)

= −1
2
(
(∆xB −∆pB)2 + 2∆xB∆pB

)

≤ −∆xB∆pB

≤ −1
2

,

(56)

with equality if and only if |ψ〉 is a coherent state. Thus coherent states have the smallest initial
rate of decrease of average fidelity as t increases from zero. Of course, the same information is
contained in Eq. (50) specialized to t = 0,

dF

dt

∣∣∣∣
t=0

= −1
2

∫
d2µ

π
|µ|2|Φρ(µ)|2 , (57)

except that here this information is encoded in the large-scale structure of the characteristic
function and, hence, in the small-scale structure of the Wigner function. Fourier transform yields
an expression in terms of the Wigner function:

dF

dt

∣∣∣∣
t=0

= −1
2

∫
d2µ

π
|µ|2|Φρ(µ)|2

= −π

2

∫
d2ν

∣∣∣∣
∂Wρ

∂ν∗

∣∣∣∣
2

= −π

4

∫
d2ν

∣∣∣∣
∂Wρ

∂ν1
+ i

∂Wρ

∂ν2

∣∣∣∣
2

= −π

4

∫
d2ν

[(
∂Wρ

∂ν1

)2

+
(

∂Wρ

∂ν2

)2
]

= −π

8

∫
dν1 dν2

[(
∂Wρ

∂ν1

)2

+
(

∂Wρ

∂ν2

)2
]

= −π

8

∫
dν1 dν2 |∇Wρ|2

(58)

This derivative provides a sensible measure of the small-scale structure in the Wigner function.
If we approximate F (t) ' 1 + t(dF/dt)t=0 and ask when this approximation goes to zero, we get

11



a critical value of t given by

t0 = − 1
(dF/dt)t=0

=
1∣∣(dF/dt)t=0

∣∣ ; (59)

the appropriate measure of the size of the small-scale structure is

` ≡
√

t0/2 =
1√

2
∣∣(dF/dt)t=0

∣∣

=
1√

〈ψ|(∆xB)2|ψ〉+ 〈ψ|(∆pB)2|ψ〉

=
(

π

4

∫
dν1 dν2 |∇Wρ|2

)−1/2

,

(60)

which is exactly what we might have guessed for a good measure of small-scale structure without
any consideration of teleportation fidelity. For coherent states, we get ` = 1, and for squeezed
states with squeeze parameter u, we get ` = 1/

√
cosh 2u.

We can get improved bounds on average fidelity by returning to the forms

F (t) =
2
t

∫
d2µ

π
e−2|µ|2/t|Φρ(µ)|2 =

∫
d2µ

π
e−t|µ|2/2|Φρ(µ)|2 . (61)

Given the constraints (48) on |Φρ(µ)|2, the average fidelity is bounded above by the case where
|Φρ(µ)|2 is as tightly confined about µ = 0 as possible, i.e., |Φρ(µ)|2 vanishes outside a circle of
radius |ν| = 1 and is equal to 1 inside the circle. This will not give a tight upper bound because
no pure state has this characteristic function. Thus we get

F (t) ≤ 2
t

∫

|µ|≤1

d2µ

π
e−2|µ|2/t =

2
t

∫ 1

0

dx e−2x/t = 1− e−2/t ,

F (t) ≤
∫

|µ|≤1

d2µ

π
e−t|µ|2/2 =

∫ 1

0

dx e−tx/2 =
2
t
(1− e−t/2) .

(62)

We can also use the Schwarz inequality in the following way:

F (t) =
(

2
t

∫
d2µ

π
e−2|µ|2/t|Φρ(µ)|2

)1/2 (∫
d2µ

π
e−t|µ|2/2|Φρ(µ)|2

)1/2

≥
√

2
t

∫
d2µ

π
e−|µ|

2(1/t+t/4)|Φρ(µ)|2

=

√
2
t

I

(
1
t

+
t

4

)
.

(63)

This implies two inequalities:

F (t) ≥
√

2
t
F

(
2
t

+
t

2

)
,

F (t) ≥
√

2
t

2
2/t + t/2

F

(
4

2/t + t/2

)
.
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The most useful results of all these manipulations are the various forms for dF/dt|t=0 and
the relation of this derivative to the scale of sub-Planck structure. All the bounds turn out to
be irrelevant now, because I am able to show that the maximum average fidelity is given by the
coherent-state fidelity for all values of t. To do so, return to the last expression for the average
fidelity in Eq. (33),

F ρ(t) =
∫

d2β d2ν e−t|β−ν|2/2Wρ(β)Wρ(ν) . (64)

Notice that this fidelity can be thought of as the average value of e−t|β−ν|2/2 with respect to
a product state ρ ⊗ ρ of two modes, b and v, the joint Wigner function for the two modes
being WBV (β, ν) = Wρ(β)Wρ(ν). Introducing modes c = (b + v)/

√
2 and d = (b − v)/

√
2, with

corresponding c-number variables γ = (β + ν)/
√

2 and δ = (β − ν)/
√

2, we can re-write the
average fidelity (64) as

F ρ(t) =
∫

d2γ d2δ e−t|δ|2WCD(γ, δ) , (65)

where WCD(γ, δ) = WBV (β, ν).
What we see is that the average fidelity is the expectation value of the mode-d operator At

whose symmetrically ordered associated function is e−t|δ|2 . Letting t = 1/(n̄ + 1/2), we see that
At is given by n̄ + 1/2 times the density operator for a thermal state of mode d whose mean
number of photons is

n̄ =
1
t

(
1− t

2

)
=⇒ 1 + n̄ =

1
t

(
1 +

t

2

)
, (66)

i.e.,

At =
n̄ + 1/2
1 + n̄

(
n̄

1 + n̄

)d†d

=
1

1 + t/2

(
1− t/2
1 + t/2

)d†d

=
1

1 + t/2

(
1− t/2
1 + t/2

)(b−v)†(b−v)/2

.

(67)

Thus we can write the average fidelity as

F ρ(t) = tr
(
ρ⊗ ρAt

)
(68)

For t = 0, At = 1, and we recover the result that the average fidelity is 1 regardless of the input
state. Using

dAt

dt

∣∣∣∣
t=0

= −
(

d†d +
1
2

)
= −1

2
(
d†d + dd†

)
= −1

4
(
b†b + bb† + v†v + vv† − 2b†v − 2v†b

)
, (69)

we can re-derive Eq. (56), i.e.,

dF

dt

∣∣∣∣
t=0

= tr
(

ρ⊗ ρ
dAt

dt

∣∣∣∣
t=0

)
= −1

2
(〈b†b + bb†〉 − 2|〈b〉|2) , (70)
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since b and v are in the same state ρ.
Generally, we can use Eq. (67) to bound the average fidelity by the largest eigenvalue of At:

F ρ(t) ≤



largest
eigenvalue

of At


 =

1
1 + t/2

. (71)

The reason this is the largest eigenvalue is that the factor in large parentheses in the expres-
sion (67) for At has magnitude ≤ 1, which means that the largest eigenvalue, corresponding to
the vacuum state for mode d, is (1 + t/2)−1. Since coherent states saturate the upper bound, we
can write

Fmax(t) = F coh(t) =
1

1 + t/2
. (72)

Notice that the bound on the expectation value of At holds for all joint states of modes b
and v, with arbitrary Wigner functions WBV (β, ν), not just the pure product copy states that
are relevant to the average fidelity. In general, we can say that the bound is saturated if and only
if mode d is in vacuum. Considering just pure product states |Ψ〉 = |ψB〉 ⊗ |ψB〉, however, we
can immediately show that only copy coherent states achieve the fidelity bound. Saturating the
fidelity bound requires that mode d be in vacuum, i.e., that

0 = d|Ψ〉 =
1√
2
(b− v)|Ψ〉 . (73)

This condition becomes b|ψB〉⊗|ψV 〉 = |ψB〉⊗v|ψV 〉, which requires that b|ψB〉 = |ψB〉〈ψV |v|ψV 〉
and v|ψV 〉 = |ψV 〉〈ψB |b|ψB〉, i.e., that |ψB〉 = |ψV 〉 be a coherent state. Thus the fidelity bound,
which requires that the state of B and V be a product copy state, is saturated only by coherent
states.

Our conclusion is that the gold standard for quantum teleportation is teleporting a non-
Gaussian state with fidelity exceeding Fmax(1) = 2/3.

Another way of thinking is to adopt the point of view advanced for qubit teleportation
by Toner and Bacon. We can make an exact hidden-variable model for any continuous-variable
teleportation if Alice is allowed to transmit the vacuum-strength (t = 1) kick to Bob, who removes
it from his mode along with the measured values X and P . The typical phase-space size of the
kick is 1/

√
2, and it must be removed to the same accuracy, i.e., e−r/

√
2, as for the measured

values. Thus the number of bits required to transmit the two quadrature components of the kick
is roughly 2 log(er) ∼ 2 log(1/`) = log L2, i.e., half the number of bits required for sufficiently
accurate transmission of X and P .

Another application of the technique used to show the fidelity bound (71) is to show that the
largest fidelity for teleporting coherent states using a separable state for A and B is 1/2. To see
this, first assume that the state of modes A and B is a pure separable state, i.e., a pure product
state. Then use |Φcoh(ν)|2 = e−|ν|

2
to write the average fidelity for teleporting a coherent state

as
F =

∫
d2ν P (ν) e−|ν|

2

=
∫

d2ν d2α e−|ν|
2
WA(α)WB(ν − α∗)

=
∫

d2α d2β e−|α−β|2WA(−α∗)WB(β) .

(74)
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The quasidistribution WA(−α∗) is the Wigner function for the time-reversed, parity-inverted
state of mode A. We can now use the general bound to obtain F ≤ 1/2 (t = 2), with equality
holding if and only if mode A is in a coherent state |α〉 and mode B is in the time-reversed,
parity-inverted coherent state |−α∗〉. Now suppose the state of modes A and B is a separable
state, thus having a product-pure-state ensemble decomposition. The fidelity is now the average
over the product-pure-state ensemble, which shows that the fidelity is bounded above by 1/2, with
equality if and only if the state is a mixture of product states of the form |α〉 ⊗ |−α∗〉.* Notice
that the correlations in this kind of state are a classical version of the quantum correlations in
the squeezed state (24).

6. Number-state analysis

The diffusion superoperator that takes the input to the average output is given by

D ≡ 2
t

∫
d2ν

π
e−2|ν|2/tD(b, ν)¯D†(b, ν) , (75)

i.e., ρout = D(ρ). It is useful to find the number-state representation of D:

Dlj,mk =
〈
l
∣∣D(|j〉〈k|)

∣∣m〉

=
2
t

∫
d2ν

π
e−2|ν|2/t〈l|D(b, ν)|j〉〈k|D†(b, ν)|m〉

=
2
t

∫
d2ν

π
e−2|ν|2/t〈l|D(b, ν)|j〉〈m|D(b, ν)|k〉∗ .

(76)

Using

〈m|D(b, ν)|n〉 =





√
n!
m!

e−|ν|
2/2νm−nL(m−n)

n

(|ν|2) , m ≥ n
√

m!
n!

e−|ν|
2/2(−ν∗)n−mL(n−m)

m

(|ν|2) , m ≤ n

, (77)

we see that the phase integral in d2µ makes Dlj,mk vanish unless l − j = m − k. This allows us

* A mixed state that has F = 1/2 has other other ensemble decompositions, of course. In such
a decomposition, the entangled states can give fidelity > 1/2, and product states give fidelities
≤ 1/2. In any separable decomposition, which has only product states, all of these product states
must be of the form |α〉 ⊗ |−α∗〉.
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to write

Dlj,mk = δl−j,m−k
2
t

∫
d2ν

π
e−|ν|

2(1+2/t)

×





√
j! k!
l! m!

|ν|2(m−k)L
(m−k)
j

(|ν|2)L(m−k)
k

(|ν|2) , m ≥ k
√

l! m!
j! k!

|ν|2(k−m)L
(k−m)
l

(|ν|2)L(k−m)
m

(|ν|2) , m < k

= δl−j,m−k
2
t

∫
dx e−x(1+2/t)





√
j! k!
l! m!

xm−kL
(m−k)
j (x)L(m−k)

k (x) , m ≥ k
√

l! m!
j! k!

xk−mL
(k−m)
l (x)L(k−m)

m (x) , m < k

.

(78)

Now we use G&R 7.414.4 to evaluate the integral in terms of a hypergeometric function:

Dlj,mk = δl−j,m−k
(j + m)!√
l! m! j! k!

×





(2/t)j+k+1

(1 + 2/t)j+m+1
F

(−k,−j;−j −m; 1− t2/4
)

, m ≥ k

(2/t)l+m+1

(1 + 2/t)j+m+1
F

(−m,−l;−j −m; 1− t2/4
)

, m < k

= δl−j,m−k
(j + m)!√
l! m! j! k!

×





(t/2)m−k

(1 + t/2)j+m+1
F

(−k,−j;−j −m; 1− t2/4
)

, m ≥ k

(t/2)k−m

(1 + t/2)j+m+1
F

(−m,−l;−j −m; 1− t2/4
)

, m < k

.

(79)

As Andrew Scott pointed out to me, the property F (a, b; c; z) = (1− z)c−a−bF (c−a, c− b; c; z) =
(1 − z)c−a−bF (c − b, c − a; c; z) shows that the two expressions involving the hypergeometric
function are the same when l − j = m− k, so we can use either one, i.e.,

Dlj,mk = δl−j,m−k
(j + m)!√
l! m! j! k!

(t/2)m−k

(1 + t/2)j+m+1
F

(−k,−j;−j −m; 1− t2/4
)

. (80)

We retain the two expressions in what follows, however, because it makes the subsequent conver-
sion to Jacobi polynomials easier.
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An important special case is

Dln,mn =
〈
l
∣∣D(|n〉〈n|)∣∣m〉

=
2
t

∫
d2ν

π
e−2|ν|2/t〈l|D(b, ν)|n〉〈m|D(b, ν)|n〉∗

= δlm
(n + m)!

n!m!





(t/2)m−n

(1 + t/2)n+m+1
F

(−n,−n;−n−m; 1− t2/4
)

, m ≥ n,

(t/2)n−m

(1 + t/2)n+m+1
F

(−m,−m;−n−m; 1− t2/4
)

, m < n,

= δlm
(n + m)!

n!m!
(t/2)|m−n|

(1 + t/2)n+m+1
F

(−N,−N ;−n−m; 1− t2/4
)

,

(81)

where N ≡ min(n,m). We can write this in terms of the Jacobi polynomials, P
(α,β)
n (x), by using

A&S 22.5.43 with n → N , α → 0, β → |m− n|,

x → −1 + t2/4
1− t2/4

, i.e., g(x) =
2

1− x
→ 1− t2/4 ,

which gives the other parameters in A&S 22.5.43 as a = −n → −N , b = −n → −N , c =
−2n− α− β → −n−m, and

d =
(

2n + α + β

n

) (
x− 1

2

)n

→ (n + m)!
n! m!

(
− 1

1− t2/4

)N

.

The result is

(n + m)!
n! m!

F
(−N,−N ;−n−m; 1− t2/4

)
= (−1)N

(
1− t2/4

)N
P

(0,|m−n|)
N

(
−1 + t2/4

1− t2/4

)

=
(
1− t2/4

)N
P

(|m−n|,0)
N

(
1 + t2/4
1− t2/4

)
,

(82)

where we use (−1)nP
(α,β)
n (−x) = P

(β,α)
n (x) (A&S 22.4.1) in the last line. This allows us to rewrite

Eq. (81) as

Dln,mn = δlm
(t/2)|m−n|

(1 + t/2)n+m+1

(
1− t2/4

)N
P

(|m−n|,0)
N

(
1 + t2/4
1− t2/4

)

= δlm
(t/2)|m−n|(1− t/2)N

(1 + t/2)M+1
P

(|m−n|,0)
N

(
1 + t2/4
1− t2/4

)
,

(83)

where M ≡ max(n,m).
This particular case allows us to find an explicit expression for the average output state when

the input is a number state |n〉,

ρout = D(|n〉〈n|) =
∑

l,m

Dln,mn|l〉〈m| =
∑
m

Dmn,mn|m〉〈m| . (84)
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This confirms the earlier assertion that for an input number state, ρout is diagonal in the number-
state representation, and it gives us an explicit formula for the average fidelity for input number
states:

F |n〉〈n|(t) = Dnn,nn =
(1− t/2)n

(1 + t/2)n+1
Pn

(
1 + t2/4
1− t2/4

)
, (85)

where we use P
(0,0)
n (x) = Pn(x) (A&S 22.5.35) to reduce the Jacobi polynomial to a Legendre

polynomial. It is easy to check that this expression satisfies the general relation (34).
For s = −1, the average fidelity is

F |n〉〈n|(1) =
2

3n+1
Pn(5/3) . (86)

The case s = −2 is the only one for which we have to think a bit, since the argument of the
Legendre polynomial blows up. Since Pn is a polynomial of rank n, the singularity in the argument
is compensated by the factor in front, and the only term in Pn(x) that survives is the term of
highest rank, anxn, where

an = dnc0 =
1
2n

(
2n

n

)
=

1
2n

(2n)!
(n!)2

(A&S 22.3.8). The average fidelity for s = −2 becomes

F |n〉〈n|(2) =
2n

22n+1
an =

1
22n+1

(2n)!
(n!)2

. (87)

This being enough rummaging around in the A&S chapter on orthogonal polynomials, I close
this section.

7. Mixed-state teleportation and entanglement fidelity

An appropriate measure for assessing the fidelity with which a mixed state ρ is teleported is
the entanglement fidelity, which is the fidelity for teleporting Victor’s half of a purification of ρ,
thus transferring the entanglement to Bob (entanglement swapping). It is quite easy to see how
to generalize all of our results to entanglement fidelity. Victor’s mode is now entangled with a
mode U that has annihilation operator u (c-number variable µ); the joint state of U and V is
a pure state ρUV = |ψUV 〉〈ψUV |, which purifies Victor’s state ρ, i.e., trU (ρUV ) = ρ. Any such
purification can be written as

|ψUV 〉 = 1⊗√ρ|φUV 〉 =
∞∑

n=0

|n〉 ⊗ √ρ|n〉 , (88)

where |φUV 〉 =
∑∞

n=0 |n〉 ⊗ |n〉 and |n〉 denotes arbitrary orthonormal bases in U and V .
The results of Section 1 generalize to the following:

p(ξ) =
∫

d2µd2ν WρUV (µ, ν)WA(ξ∗ − ν∗) , (89)
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Wout(µ, β| ξ) =
1

p(ξ)

∫
d2ν WρUV

(µ, ν)WAB(ξ∗ − ν∗, β − ξ) , (90)

ρout =
∫

d2ν P (ν)1⊗D(b, ν)ρUV 1⊗D†(b, ν) , (91)

Wρout
(µ, β) =

∫
d2ν P (ν)WρUV

(µ, β − ν) , (92)

Φρout
(ν, α) = πP̃ (α)ΦρUV

(ν, α) . (93)

The average entanglement fidelity is

F ent =
∫

d2ξ p(ξ)〈ψUV |ρout(ξ)|ψUV 〉
= 〈ψUV | ρout|ψUV 〉
=

∫
d2ν P (ν)|〈ψUV |1⊗D(b, ν)|ψUV 〉|2

=
∫

d2ν P (ν)
∣∣tr(ρD(b, ν)

)∣∣2

=
∫

d2ν P (ν)|Φρ(ν)|2

= π

∫
d2β d2ν P̃ (β − ν)Wρ(β)Wρ(ν) ;

(94)

i.e., the average entanglement fidelity is given by the first and last forms of the average fidelity (21).
In contrast, the analogue of the second form in Eq. (21) is

F ent = 〈ψUV | ρout|ψUV 〉
= π2

∫
d2µd2β Wρout

(µ, β)WρUV
(µ, β)

= π

∫
d2µ

(
π

∫
d2β d2ν P (β − ν)WρUV (µ, β)WρUV (µ, ν)

)
,

(95)

and the analogue of the third form is

F ent = 〈ψUV | ρout|ψUV 〉 =
∫

d2ν d2α

π2
Φ∗ρout

(ν, α)ΦρUV (ν, α) =
∫

d2ν

π
d2α P̃ (α)|ΦρUV (ν, α)|2 .

(96)
The meaning of these differences is the following. The characteristic function Φρ(ν) has fine

structure on a small scale ` and coarse structure on a large scale L. These are inverted in the
Wigner function: Wρ(β) has coarse structure on the scale 1/` and small-scale structure on the
scale 1/L. The difference with mixed states is that there is no necessary connection between the
small and large scales; ` and L, instead of being related by `L ∼ 1 as for pure states, satisfy
`2 <∼ `L <∼ 1. Thus the small-scale structure 1/L in the Wigner function can be at any scale from
` all the way up to 1/`, where there is no fine structure at all.
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What the bottom two expressions for the entanglement fidelity in Eq. (94) mean is that to
get high entanglement fidelity, P (ν) must be narrower than the fine scale ` in the characteristic
function, meaning that P̃ (α) is broader than the coarse scale 1/` in the Wigner function. This
is just as it is for pure states, and it is sufficient for high-fidelity teleportation of entanglement.
That the expressions for the entanglement fidelity in Eqs. (95) and (96) are different than for
pure states means that the appropriate coarse structure in the characteristic function and the
corresponding fine structure in the Wigner function are only captured in the functions for a joint
purified state. In other words, the potential Wigner-function fine structure associated with a
purification of ρ—structure that must be teleported to achieve high entanglement fidelity—is
expressed in the quantity

π

∫
d2µWρUV

(µ, β)WρUV
(µ, ν) = π

∫
d2µWρUV

(µ∗, β)WρUV
(µ∗, ν) (97)

or, equivalently, as course structure, in the quantity

∫
d2ν

π
|ΦρUV (ν, α)|2 =

∫
d2ν

π
|ΦρUV (−ν∗, α)|2 . (98)

The reason for the second forms in these expressions becomes clear as we manipulate them below.
Since the entanglement fidelity is independent of which purification is used, we can put these

two quantities solely in terms of ρ. To do so, assume that the states |n〉 denote number states for
U and V . The characteristic-function expression is preferable because it is a function of only one
complex variable, so we deal with it first:

ΦρUV
(−ν∗, α) = tr

(
ρUV D(u,−ν∗)D(b, α)

)

= 〈ψUV |D(u,−ν∗)D(b, α)|ψUV 〉
= 〈φUV |(1⊗√ρ)

(
D(u,−ν∗)⊗D(b, α)

)
(1⊗√ρ)|φUV 〉

=
∑
n,m

〈n|D(u,−ν∗)|m〉〈n|√ρD(b, α)
√

ρ|m〉

=
∑
n,m

〈m|DT (u,−ν∗)|n〉〈n|√ρD(b, α)
√

ρ|m〉

= tr
(
DT (b,−ν∗)

√
ρD(b, α)

√
ρ
)

= tr
(
D(b, ν)

√
ρD(b, α)

√
ρ
)

.

(99)

The transposition and complex conjugation are taken with respect to the number basis; in the
final step, we use

DT (b,−ν∗) =
(
[D(b,−ν∗)]†

)∗ = D∗(b, ν∗) = D(b, ν) , (100)

remembering that the creation and annihilation operators are real in the number representation.
The coarse structure in the characteristic function

ΦρUV
(−ν∗, α) = tr

(
D(b, ν)

√
ρD(b, α)

√
ρ
)

(101)
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captures the fine structure in the joint Wigner function for the particular purification based on
the number representation. In its coarse structure, the corresponding integral (98),

∫
d2ν

π
|ΦρUV

(−ν∗, α)|2 =
∫

d2ν

π

∣∣tr(D(b, ν)
√

ρD(b, α)
√

ρ
)∣∣2 , (102)

captures directly the potential fine-scale Wigner-function structure in any purification. It is this
potential fine structure that must be teleported to achieve high fidelity.

Turning to the Wigner-function expression, we start with

WρUV
(µ, β) = tr

(
ρUV D̃(0)(u, µ)D̃(0)(b, β)

)
, (103)

where

D̃(0)(b, β) =
∫

d2α

π
D(b, α)D(α, β) = 2D(b, β)PD†(b, β) = 2PD(b,−2β) (104)

is the Fourier transform of the displacement operator (P is the parity operator). Now proceeding
just as for the characteristic function, we have

WρUV
(µ∗, β) = tr

(
ρUV D̃(0)(u, µ∗)D̃(0)(b, β)

)

= 〈ψUV |D̃(0)(u, µ∗)D̃(0)(b, β)|ψUV 〉
= 〈φUV |(1⊗√ρ)

(
D̃(0)(u, µ∗)D̃(0)(b, β)

)
(1⊗√ρ)|φUV 〉

=
∑
n,m

〈n|D̃(0)(u, µ∗)|m〉〈n|√ρD̃(0)(b, β)
√

ρ|m〉

=
∑
n,m

〈m|D̃(0)T (u, µ∗)|n〉〈n|√ρD̃(0)(b, β)
√

ρ|m〉

= tr
(
D̃(0)T (b, µ∗)

√
ρD̃(0)(b, β)

√
ρ
)

= tr
(
D̃(0)(b, µ)

√
ρD̃(0)(b, β)

√
ρ
)

,

(105)

where in the last step, we use

D̃(0)T (b, µ∗) =
(
[D̃(0)(b, µ∗)]†

)∗ = D̃(0)∗(b, µ∗) = D̃(0)(b, µ) . (106)

The fine structure in the two-variable function

π

∫
d2µWρUV

(µ∗, β)WρUV
(µ∗, ν) = π

∫
d2µ tr

(
D̃(0)(b, µ)

√
ρD̃(0)(b, β)

√
ρ
)

× tr
(
D̃(0)(b, µ)

√
ρD̃(0)(b, ν)

√
ρ
) (107)

captures directly the potential fine-scale Wigner-function structure in any purification of ρ.
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8. Required classical communication and sub-Planck structure

We can get a more quantitative idea of the classical communication required for continuous-
variable teleportation—and its relation to the scale of sub-Planck structure—by considering the
effect of having Alice send her information through a noisy Gaussian channel. Formally, we mean
that the probability that Bob receives complex variable η, given that Alice sends ξ, is a Gaussian

p(η| ξ) =
1

πσ2
1

e−|η−ξ|2/σ2
1 . (108)

The state of Bob’s mode, given that he receives η, becomes

W ′(β| η) =
∫

d2ξ W ′(β| ξ)p(ξ| η)

=
∫

d2ξ W ′(β| ξ)p(η| ξ)p(ξ)
p(η)

=
1

p(η)

∫
d2ν Wρ(ν)

∫
d2ξ p(η| ξ)WAB(ξ∗ − ν∗, β)

=
1

p(η)

∫
d2ν Wρ(ν)

∫
d2ξ

πσ2
1

e−|ξ|
2/σ2

1WAB(η∗ − ν∗ + ξ∗, β)
︸ ︷︷ ︸

= ŴAB(η∗ − ν∗, β)

.

(109)

The effect of the noisy channel is thus just the same as changing the initial state of modes A and
B to a state with Wigner function

ŴAB(α, β) =
∫

d2ξ

πσ2
1

e−|ξ|
2/σ2

1WAB(α+ξ∗, β) =
∫

d2ξ

πσ2
1

e−|ξ|
2/σ2

1P (ν+ξ)R(µ−ξ/2| ν+ξ) , (110)

i.e., a convolution of the original Wigner function with a Gaussian. In the last expression in
Eq. (110), we use the previous definitions (12) for ν and µ. The probability for Bob to receive η
becomes

p(η) =
∫

d2β W ′(β| η)p(η) =
∫

d2ν Wρ(ν)ŴA(η∗ − ν∗) . (111)

The entire effect of the new Wigner function (110) can be described by saying that in calculat-
ing expectation values involving α and β, α is replaced by α− ξ∗, where α and ξ are independent
complex random variables distributed according to WAB(α, β) and e−|ξ|

2/σ2
1/πσ2

1 , respectively.
Translated to the variables γ = (α + β)/

√
2 and δ = (α− β)

√
2, this becomes

γ1 → γ1 − ξ1/
√

2 ,

γ2 → γ2 + ξ2/
√

2 ,

δ1 → δ1 − ξ1/
√

2 ,

δ2 → δ2 + ξ2/
√

2 ,

(112)

where ξ1 and ξ2 are uncorrelated, zero-mean Gaussian random variables, both having variance σ2
1 .

22



Now specialize to squeezed-state teleportation. We get the following correlation matrix:

〈γ2
1〉 = 〈δ2

2〉 =
1
2
(e−2r + σ2

1) ,

〈γ2
2〉 = 〈δ2

1〉 =
1
2
(e2r + σ2

1) ,

〈γ1δ1〉 = 〈γ2δ2〉 =
1
2
σ2

1 ,

〈γ1γ2〉 = 〈γ1δ2〉 = 〈γ2δ1〉 = 〈δ1δ2〉 = 0 .

(113)

This means that we can update all our expressions involving the average fidelity by replacing
P (ν) by

P̂ (ν) =
∫

d2ξ

πσ2
1

e−|ξ|
2/σ2

1P (ν + ξ) =
1

π(e−2r + σ2
1)

e−|ν|
2/(e−2r+σ2

1) =
2
πt̂

e−2|ν|2/ t̂ , (114)

i.e., by replacing t everywhere by t̂ = 2(e−2r + σ2
1) = t + 2σ2

1 . Squeezed-state teleportation also
allows us to simplify Eq. (110) to

ŴAB(α, β) =
∫

d2ξ

πσ2
1

e−|ξ|
2/σ2

1P (ν + ξ)R(µ− ξ/2) . (115)

Nothing up till now has required any assumptions about the amount of squeezing. We’re
now going to work in the high-fidelity limit. In this limit we can write the average fidelity as

F (t̂) = F (0) + t̂
dF

dt

∣∣∣∣
t=0

= 1− e−2r + σ2
1

t0/2
= 1− e−2r + σ2

1

`2
. (116)

The high-fidelity limit requires that e−2r and σ2
1 both be small compared to the small-scale

structure in the Wigner function; i.e., both are small compared to t0/2 = `2, as one can see from
Eq. (116). In this limit, we can set ξ = 0 in the broad Gaussian in Eq. (115), obtaining

ŴAB(α, β) = R(µ)︸ ︷︷ ︸
= R̂(µ)

∫
d2ξ

πσ2
1

e−|ξ|
2/σ2

1P (ν + ξ)
︸ ︷︷ ︸

= P̂ (ν)

. (117)

In the high-fidelity limit, the probability for Bob to receive η becomes

p(η) =
∫

d2β d2ν Wρ(β − ν)P̂ (ν)R̂(β − η − ν/2) = R̂(〈v〉 − η) =
4e−2r

π
e−4e−2r| η−〈v〉|2 , (118)

where in the latter two expressions we make the same approximations as in Eq. (37).
The information Alice sends to Bob can be quantified by the mutual information between

the complex variables η and ξ,

I1 = −
∫

d2η d2ξ p(η| ξ)p(ξ) log
(

p(η)
p(η| ξ)

)
= log

(
e2r/4
σ2

1

)
, (119)
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which relates the variance of the noisy channel to the transmitted information,

σ2
1 =

1
4

e2r2−I1 =
1
4

22r/ ln 2−I1 . (120)

Putting all this together, we get a final expression for the average fidelity:

F (t̂) = 1− e−2r + 22r/ ln 2−I1/4
`2

= 1− e−2r

`2
− 1

4
22r/ ln 2+log(1/`2)−I1 . (121)

This expression tells us that to achieve good fidelity, we need to have sufficient squeezing that
e−r is somewhat smaller than ` and that I1 is somewhat larger than 2r/ ln 2 + log(1/`2), which
is somewhat larger than log(1/`4).

Now let’s consider another scenario, this time of the Bacon-Toner type. Suppose Alice gives
Victor’s state a phase-space kick τ , distributed according to

p(τ) =
2
π

e−2|τ |2 . (122)

This kicking strength, averaged over τ , turns the original Wigner function into the (positive)
Husimi Q function. The state that Alice teleports is D(v, τ)ρD†(v, τ), with Wigner function
WD(v,τ)ρD†(v,τ)(ν) = Wρ(ν − τ). Alice communicates her measurement result ξ to Bob, after
which the state of mode B is

W ′′(β| ξ, τ) =
1

p(ξ)

∫
d2ν Wρ(ν − τ)WAB(ξ∗ − ν∗, β) . (123)

Now suppose Alice also communicates the kick strength τ over a noisy Gaussian channel where
the probability that Bob receives kick strength κ, given that Alice sends τ , is

p(κ|τ) =
1

πσ2
2

e−|κ|
2/σ2

2 . (124)

Bob displaces mode B by −κ, leaving a Wigner function for mode B, after averaging over τ and
κ, given by

W ′(β| ξ) =
∫

d2τ d2κ p(κ|τ)p(τ)W ′′(β + κ| ξ, τ)

=
1

p(ξ)

∫
d2τ d2κ d2ν p(κ|τ)p(τ)Wρ(ν − τ)WAB(ξ∗ − ν∗, β + κ)

=
1

p(ξ)

∫
d2ν Wρ(ν)

∫
d2τ d2κ p(κ|τ)p(τ)WAB(ξ∗ − ν∗ − τ∗, β + κ)

︸ ︷︷ ︸
= W̌AB(ξ∗ − ν∗, β)

.

(125)

The effect of the kicks is thus just the same as changing the initial state of modes A and B to a
state with Wigner function

W̌AB(α, β) =
∫

d2τ d2κ p(κ|τ)p(τ)WAB(α− τ∗, β + κ)

=
∫

d2τ p(τ)
∫

d2χ

πσ2
2

e−|χ|
2/σ2

2WAB(α− τ∗, β + τ + χ)

=
∫

d2τ p(τ)
∫

d2χ

πσ2
2

e−|χ|
2/σ2

2P (ν + χ)R(µ + τ + χ/2|ν + χ) .

(126)
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By integrating over µ, we get

P̌ (ν) =
∫

d2µ W̌AB(α, β) =
∫

d2τ p(τ)
∫

d2χ

πσ2
2

e−|χ|
2/σ2

2P (ν + χ) =
∫

d2χ

πσ2
2

e−|χ|
2/σ2

2P (ν + χ) ,

(127)
which replaces P (ν) in all calculations involving the average fidelity.

We could go on to analyze this scenario in the case of high-fidelity squeezed-state teleporta-
tion, but what we really want to do is to combine the two scenarios. We see that the effect of the
two scenarios is the same as replacing the initial state of modes A and B by a state with Wigner
function

ŴAB(α, β) =
∫

d2ξ

πσ2
1

e−|ξ|
2/σ2

1W̌AB(α + ξ∗, β)

=
∫

d2τ p(τ)
∫

d2ξ

πσ2
1

d2χ

πσ2
2

e−|ξ|
2/σ2

1 e−|χ|
2/σ2

2WAB(α + ξ∗ − τ∗, β + τ + χ)

=
∫

d2τ p(τ)

×
∫

d2ξ

πσ2
1

d2χ

πσ2
2

e−|ξ|
2/σ2

1 e−|χ|
2/σ2

2P (ν + ξ + χ)R(µ + τ − ξ/2 + χ/2|ν + ξ + χ) .

(128)
By integrating over µ, we get

P̂ (ν) =
∫

d2µ ŴAB(α, β) =
∫

d2ξ

πσ2
1

d2χ

πσ2
2

e−|ξ|
2/σ2

1 e−|χ|
2/σ2

2P (ν + ξ + χ) , (129)

which replaces P (ν) in all calculations involving the average fidelity.
Specializing to squeezed-state teleportation, we get

P̂ (ν) =
1

π(e−2r + σ2
1 + σ2

2)
e−|ν|

2/(e−2r+σ2
1+σ2

2) =
2
πt̂

e−2|ν|2/t̂ ; (130)

i.e., we can update all our results on average fidelity to this scenario by replacing t everywhere
by t̂ = 2(e−2r + σ2

1 + σ2
2) = t + 2σ2

1 + 2σ2
2 . Squeezed-state teleportation also allows us to simplify

Eq. (128) to

Ŵ (α, β) =
∫

d2τ p(τ)
∫

d2ξ

πσ2
1

d2χ

πσ2
2

e−|ξ|
2/σ2

1 e−|χ|
2/σ2

2P (ν + ξ + χ)R(µ + τ − ξ/2 + χ/2) . (131)

In the high-fidelity limit, we can write the average fidelity as

F (t̂) = F (0) + t̂
dF

dt

∣∣∣∣
t=0

= 1− e−2r + σ2
1 + σ2

2

t0/2
= 1− e−2r + σ2

1 + σ2
2

`2
. (132)

In the high-fidelity limit, we can also make the same approximations as before [these approxima-
tions are not so good for p(τ)], obtaining

ŴAB(α, β) = R(µ)︸ ︷︷ ︸
= R̂(µ)

∫
d2ξ

πσ2
1

d2χ

πσ2
2

e−|ξ|
2/σ2

1 e−|χ|
2/σ2

2P (ν + ξ + χ)
︸ ︷︷ ︸

= P̂ (ν)

. (133)
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This allows us to conclude that in the high-fidelity limit the probability for Bob to receive η is
given by Eq. (118), implying that the mutual information between η and ξ is given by Eq. (119).

We also need the mutual information between τ and κ. The unconditioned probability for κ
is given by

p(κ) =
∫

d2τ p(κ|τ)p(τ) =
1

π(1/2 + σ2
2)

e−|κ|
2/(1/2+σ2

2) . (134)

The mutual information between τ and κ is

I2 = −
∫

d2κ d2τ p(κ|τ)p(τ) log
(

p(κ)
p(κ|τ)

)
= log

(
1/2 + σ2

2

σ2
2

)
, (135)

which in the high-fidelity limit, we approximate as I2 = log(1/2σ2
2), giving

σ2
2 = 2−I2−1 . (136)

This allows us to put the fidelity in the final form

F (t̂) = 1− e−2r + 22r/ ln 2−I1/4 + 2−I2−1

`2
= 1− e−2r

`2
− 1

4
22r/ ln 2+log(1/`2)−I1 − 2log(1/`2)−I2−1 .

(137)
To achieve high-fidelity in the Bacon-Toner scenario, I2 must be somewhat larger than log(1/`2),
whereas I1 must be somewhat larger than log(1/`4), meaning that this scenario, which operates
on the shared randomness of the hidden variables and the additional communication regarding
the phase-space kicks, requires roughly 50% more classical communication than quantum telepor-
tation, as already explained heuristically in Section 5.
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