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Consider a decision among hypotheses Hi, which have prior probabilities p(Hi). The
decision among the hypotheses is based on data D that have conditional probabilities
p(D|Hi). The probability that hypothesis Hi is true, given the data D, is given by Bayes’s
theorem:

p(Hi|D) =
p(D|Hi)p(Hi)

p(D)
. (1)

Although this probability sums up entirely one’s knowledge about the hypotheses given the
data, a decision cannot be based solely on these probabilities. One requires in addition a
knowledge of the costs of the various decisions. These costs are quantified by a cost matrix
C(Hi|Hj), which is the cost of adopting hypothesis Hi when Hj is true. The average cost
of adopting hypothesis Hi in the presence of data D is given by

C(Hi|D) =
∑

j

C(Hi|Hj)p(Hj |D) =
∑

j

C(Hi|Hj)p(Hj)
p(D|Hj)

p(D)
. (2)

Here the average is taken over hypotheses. Notice that the cost matrix and the prior
probabilities enter as a product C(Hi|Hj)p(Hj).

Now let ED be the decision function: for data D, ED is the adopted hypothesis. The
expected cost, averaged over hypotheses and data, is given by

C =
∑

D,j

C(ED|Hj)p(Hj |D)p(D) =
∑

D

p(D)C(ED|D) . (3)

Minimizing the expected cost is thus equivalent to choosing for each data set D the hy-
pothesis ED = Hi that has the smallest average cost C(Hi|D) for that data. Since the cost
function and the prior probabilities appear as a product in C(Hi|D), one cannot separate
the effects of the cost function and the priors on the decision function.

We can also write the expected cost as

C =
∑

j

p(Hj)C(Hj) , (4)

where
C(Hj) =

∑

D

C(ED|Hj)p(D|Hj) (5)

is the average cost given that hypothesis Hj is true. In Eq. (5) the average is taken over
the data.
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One can give a neater formulation by noting that any decision function partitions
the data sets into classes Di = {D | ED = Hi}, one class for each hypothesis. Only the
class is relevant to the decision, so we can regard the classes as the outcomes of the data
collection. The outcome Di leads to a decision for the corresponding hypothesis Hi. With
this simplification, the average cost for adopting hypothesis Hi is given by

Ci =
∑

j

C(Hi|Hj)p(Hj |Di) =
∑

j

C(Hi|Hj)p(Hj)
p(Di|Hj)

p(Di)
, (6)

and the expected cost is

C =
∑

i

Cip(Di) =
∑

i,j

C(Hi|Hj)p(Hj |Di)p(Di) =
∑

i,j

C(Hi|Hj)p(Di|Hj)p(Hj) . (7)

Neater though this formulation is, it obscures the process of optimizing over decision
functions, so we revert to the previous formulation for the remainder of the document.
The neater formulation comes into its own in quantum decision theory.

One very useful cost function assigns no cost to correct decisions and and a uniform,
positive cost to every error:

C(Hi|Hj) = 1− δij =
{

0, i = j,
1, i 6= j. (8)

In this case, the average cost of adopting hypothesis Hi in the presence of data D,

C(Hi|D) =
∑

j 6=i

p(Hj |D) = 1− p(Hi|D) , (9)

is simply the probability of having made an error. The expected cost

C =
∑

D

p(D)C(ED|D) = Pe (10)

is the total error probability. The total error probability is minimized by using a deci-
sion function that given the data D, chooses the hypothesis with the highest posterior
probability.

A similar, but more complicated cost function allows for the possibility of making no
decision when the probability of error is too high. To formulate this cost function, we need
to introduce (formally) an additional “no-decision” hypothesis H0. We know H0 isn’t true,
so we assign it zero prior probability, i.e., p(H0) = 0; this choice makes the associated costs
irrelevant, so we might just as well choose them to be zero, i.e., C(H0|H0) = C(Hj |H0) = 0.
Now, letting Roman indices designate the actual hypotheses, we choose the rest of the cost
function to be C(H0|Hj) = 1, and C(Hi|Hj) = (1 − δij)/A, where A is a nonnegative
constant. The cost of making no decision sets the unit cost, and the cost of making any
error is 1/A. Now the average cost for adopting the no-decision hypothesis in the presence
of data D is

C0(D) =
∑

j

p(Hj |D) = 1 , (11)
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and the average cost of adopting hypothesis Hi in the presence of data D is

C(Hi|D) =
1
A

∑

j 6=i

p(Hj |D) =
1
A

(
1− p(Hi|D)

)
. (12)

Minimizing the expected cost thus means choosing the hypothesis Hi with the biggest
posterior probability p(Hi|D), provided that the cost of that decision is no bigger than the
cost of no decision, i.e.,

1
A

(
1− p(Hi|D) ≤ 1 ⇐⇒ p(Hi|D) ≥ 1−A ; (13)

Otherwise one makes no decision by choosing H0. The constant A is a threshold for
making a decision: if the error probability is greater than A, then you make no decision.
For A ≥ 1, this decision function reduces to the previous one. In the limit A → 0, the
decision function becomes completely averse to errors; it chooses an actual hypothesis if
and only if that hypothesis is confirmed unambiguously by the data and otherwise makes
no decision.

We can formulate this differently by using the neater formulation where the data is
divided into classes corresponding to the different decisions. In this case the expected
cost (3) becomes

C =
∑

α,β

C(Hα|Hβ)p(Dα|Hβ)p(Hβ)

=
∑

α,j

C(Hα|Hj)p(Dα|Hj)p(Hj)

=
∑

j

p(D0|Hj)p(Hj) +
1
A

∑

i,j

(1− δij)p(Di|Hj)p(Hj)

= p(D0) +
1
A

∑

j

p(Hj)
∑

i 6=j

p(Di|Hj) .

(14)

When A → 0, minimizing the expected cost requires that we divide the data up so that
p(Di|Hj) = 0 for i 6= j, i.e., no errors, and then the expected cost becomes the probability
for all the data for which there are errors and for which we therefore make no decision.
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