
Exchangeable sequences and probabilities for probabilities

1996; modified 98–5–21 to add material on mutual information; modified 98–7–21 to add
Heath-Sudderth proof of de Finetti representation; modified 99–11–24 to make the presen-
tation clearer and more complete and 00–10–18 to include comments on the integration
measure

Suppose one assigns a probability, P (p1, . . . , pN ) = P (p), to the single-trial proba-
bilities for N alternatives. Then, in L trials, the occurrence probability—i.e., the total
probability that alternative i occurs ni times, i = 1, . . . , N—is given by

p(n) = p(n1, . . . , nN ) =
∫

dp p(n1, . . . , nN |p)P (p)

=
∫

dp
L!

n1! . . . nN !
pn1
1 . . . pnN

N P (p)

=
L!

n1! . . . nN !
〈pn1

1 . . . pnN

N 〉 .

Here

L =
N∑

i=1

ni ,

dp = dp1 . . . dpN ,

and the integral runs over positive values of the single-trial probabilities. The probability
on probabilities, P (p), is restricted to the simplex; i.e., as a function on positive values of
the probabilities, it is proportional to a delta function

δ

(
N∑

i=1

pi − 1

)
.

Notice that, in contrast to other notes, we do not include the “inverse direction cosine”√
N in the integration measure on the simplex, and we put the δ function that restricts to

the simplex in the distribution rather than in the integration measure.
The moment of single-trial probabilities,

〈pn1
1 . . . pnN

N 〉 =
∫

dp pn1
1 . . . pnN

N P (p) ,

is the probability for any sequence in which occurrence numbers are given by the vector
n = (n1, . . . , nN ). The last form of p(n) thus writes the occurrence probability in the form
of a moment of the single-trial probabilities. Notice that the occurrence probabilities for
L trials are determined by the Lth-order moments of P (p). In particular, the marginal
probabilities for a single trial,

〈pi〉 =
∫

dp piP (p) ,
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are the first moments of P (p).
An exchangeable probability assignment (or an exchangeable sequence) is one such that

the probability for a sequence does not change under reördering; in other words, all se-
quences with the same occurrence vector n have the same probability. Any probability on
probabilities leads to an exchangeable probability assignment on the multi-trial hypothesis
space. This means that there is a map from probabilities on probabilities to exchangeable
probability assignments. The de Finetti representation theorem asserts that any exchange-
able probability assignment corresponds to a unique probability on probabilities. Another
way of putting this is that the map from probabilities on probabilities to exchangeable
probability assignments is one-to-one and onto.

We can get at the uniqueness (i.e., the map is one-to-one) easily. One way to proceed
is to define a characteristic function

Φ(k) ≡ 〈
eik·p〉

=
∫

dp eik·pP (p)

=
∑

n1,...,nN

iL

n1! . . . nN !
kn1
1 . . . knN

N 〈pn1
1 . . . pnN

N 〉

=
∑

n1,...,nN

iL

L!
kn1
1 . . . knN

N p(n) .

That P (p) is restricted to the simplex means that for vectors of the form k = k(1, . . . , 1),
the characteristic function becomes Φ(k) = eik. Now it is clear why two different probabil-
ities on probabilities cannot lead to the same exchangeable probability assignment: if they
did, they would have the same characteristic function and thus, under the inverse Fourier
transform, they would be the same.

Another way of putting this is that the polynomials pn1
1 . . . pnN

N are linearly indepen-
dent and complete (but not orthogonal). Thus two different probabilities on probabilities
cannot lead to the same exchangeable sequence, for if they did, they would have have the
same overlap with this complete set of polynomials and thus would be the same.

Showing that every exchangeable assignment corresponds to a probability on prob-
abilities (the map is onto) requires more work. Suppose, for example, that one uses the
occurrence probabilities p(n) to define a characteristic function and then inverts the Fourier
transform to get a function P (p). The normalization of the occurrence probabilities im-
plies that Φ(k) = eik for k = k(1, . . . , 1), which in turn implies that P (p) is restricted
to the surface

∑
i pi = 1. The difficulty is that one can’t tell from this procedure that

P (p) is restricted to positive values of the probabilities—i.e., restricted to the simplex—
or, even worse, that it is positive. This difficulty has to be remedied by using some other
method. The simplest proof seems to be one due to David Heath and William Sudderth
[The American Statistician 30(4), 188–189 (November 1976)], which I sketch here for the
case of binary alternatives, the case considered in their paper.

Let X1, X2, . . . , XM denote the results of L trials of a binary quantity taking on values
0 and 1, and let p(n,K), K ≤ L, be the probability for n 1s in K trials. Exchangeability
guarantees that

p(n, K) =
(

K

n

)
p(X1 = 1, . . . , Xn = 1, Xn+1 = 0, . . . , XK = 0) .
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We can condition the probability on the right on the occurrence of m 1s in all L trials:

p(n,K) =
(

K

n

) L∑
m=0

p(X1 = 1, . . . , Xn = 1, Xn+1 = 0, . . . , XK = 0 | m,L)p(m,L) .

Given m 1s in L trials, the
(

L

m

)
sequences are equally likely. Thus the situation is identical

to drawing without replacement from an urn that has m 1s on L balls, and we have that

p(X1 = 1, . . . , Xn = 1, Xn+1 = 0, . . . , XK = 0 | m,L)

=
m

L

m− 1
L− 1

· · · m− (n− 1)
L− (n− 1)

L−m

L− n

L−m− 1
L− n− 1

· · · L−m− (K − n− 1)
L− (K − 1)

=
(m)n(L−m)K−n

(L)K
,

where

(r)q ≡
q−1∏

j=0

(r − j) = r(r − 1) · · · (r − q + 1) =
r!

(r − q)!
.

Therefore, we have the main result that

p(n,K) =
(

K

n

) L∑
m=0

(m)n(L−m)K−n

(L)K
p(m,L) .

The de Finetti representation theorem fails for sequences that are exchangeable for
a finite number of trials L: for finite exchangeable sequences that can be derived from a
probability on probabilities, the probability on probabilities is not unique, and there are
finite exchangeable sequences—in particular, anticorrelated sequences such as drawing from
an urn without replacement—that cannot be derived from a probability on probabilities.
Yet the Heath-Sudderth proof establishes that all finite exchangeable sequences can be
derived from mixtures of urn probabilities.

What remains is to take the limit L →∞. We can write p(n,K) as an integral

p(n,K) =
(

K

n

) ∫ 1

0

dz
(zL)n

(
(1− z)L

)
K−n

(L)K
PL(z) ,

where

PL(z) =
L∑

m=0

p(zL, L)δ(z −m/L)

is a distribution concentrated at the L-trial frequencies m/L. In the limit L →∞, PL(z)
converges to a continuous distribution on the simplex, and the other term in the integrand
goes to zn(1− z)K−n, giving

p(n,K) =
(

K

n

) ∫ 1

0

dz zn(1− z)K−nP∞(z) .
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What we have shown is that if P (n, K) is derived from an infinite exchangeable sequence,
then it has a de Finetti representation in terms of a probability distribution on the simplex.
The result can readily be extended to nonbinary variables. The conclusion is that a proba-
bility on probabilities is just a convenient shorthand for specifying occurrence probabilities
on a multi-trial hypothesis space.

The Heath-Sudderth proof is based on the fact that if the multi-trial probabilities are
derived from a probability on probabilities P (p), i.e.,

p(n, K) =
∫ 1

0

dp

(
K

n

)
pn(1− p)K−nP (p) ,

then in the limit of large N ,

p(n, K)
1/K

= P (p = n/K) ;

i.e., the probability p(m,L) that in the Heath-Sudderth proof becomes the probability on
probabilities is just what it ought to be.

It is interesting to investigate how much information one gains from L trials about the
single-trial probabilities p = (p1, . . . , pN ). This information is quantified by the mutual
information

H(DL;p) = H(DL)−H(DL|p) ,

where

H(DL) = −
∑

sequences

〈pn1
1 . . . pnN

N 〉 log〈pn1
1 . . . pnN

N 〉 = −
∑

n1,...,nN

p(n) log〈pn1
1 . . . pnN

N 〉

is the Shannon information of the data gathered in L trials and

H(DL|p) =
∫

dpP (p)
(
−L

N∑

i=1

pi log pi

)
= −L

N∑

i=1

〈pi log pi〉

is the conditional information in the L-trial data, given the single trial probabilities p.
Notice that

−L

N∑

i=1

〈pi〉 log〈pi〉 ≥ H(DL) ≥ H(DL|p) ,

where the first term is the Shannon information for L trials drawn from an i.i.d. governed
by the single-trial marginal probabilities 〈pi〉. The first inequality is a consequence of the
subadditivity of Shannon information.

When the number of trials is small, it is hard to make general statements about
the mutual information. If P (p) is concentrated at several widely separated single-trial
probabilities p, then it takes only a few trials to begin getting information about which
of the widely separated probabilities is generating the data. In contrast, suppose P (p) is
concentrated at a particular p within a small range ∆ for each alternative. In this case it
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takes many trials to begin getting much information about which single-trial probabilities
within the range are generating the data. We can estimate the number of trials required
in the following way, where we consider only two alternatives (N = 2) for simplicity.
After L trials, the data is able to determine p1 to within an uncertainty given roughly by√

p1p2/L. Thus one would expect to begin getting information about the value of p1 when√
p1p2/L ' ∆, i.e., when L ' p1p2/∆2. As L becomes even bigger, i.e., L À p1p2/∆2,

the data is able to distinguish roughly ∆/
√

p1p2/L =
√

L∆2/p1p2 values of p1, and the
mutual information should be roughly the logarithm of this number of values, i.e.,

H(DL;p) ∼ log

√
L∆2

p1p2
.

We can put these considerations on a firm footing by considering the Gaussian approx-
imation to the binomial distribution p(n|p). The Gaussian approximation requires that
for each alternative i, the number of trials is large enough that

√
pi/L ¿ pi, i.e., piL À 1,

for all probabilities p that have substantial support in P (p). If we further assume that the
number of trials is large enough that the data can distinguish all the features of P (p)—
i.e., for each alternative, P (p) does not vary significantly on the scale

√
pi/L—then it is

a tedious, but straightforward computation to show that

〈pn1
1 . . . pnN

N 〉 =
(n1

L

)n1 · · ·
(nN

L

)nN

P
(
p =

n
L

) (
2π

L

)(N−1)/2 √
n1

L
· · · nN

L

and
p(n) =

L!
n1! . . . nN !

〈pn1
1 . . . pnN

N 〉 =
1

LN−1
P

(
p =

n
L

)
,

which leads to a mutual information

H(DL;p) = −
∫

dpP (p) log
(
P (p)V(p)

)
, (1)

where

V(p) =
(

2π

L

)(N−1)/2√
p1 . . . pN

is a probability-dependent volume element on the probability simplex, which can be
thought of as the distinguishability volume determined by L trials. The mutual infor-
mation (1) has the following interpretation: bin the probabilities p according to the vol-
ume element V(p); the mutual information is the Shannon information for the discrete
distribution obtained by replacing the continuous distribution P (p) by the distribution of
probabilities for the bins. Another way of saying this is that the mutual information (1)
is the entropy of P (p) relative to a position-dependent measure m(p) = 1/V(p), which
describes the position-dependent distinguishability of distributions p.

In the aforementioned example, where P (p) is concentrated at a particular p, each
probability having a small range ∆ of possible values, the mutual information (1) becomes

H(DL;p) = log
(

∆N−1

V(p)

)
= log

(
(L∆2/2π)(N−1)/2

√
p1 . . . pN

)
,
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which simplifies to the estimate above for N = 2. Actually, this example is flawed because
it requires one probability, say pN , to vary over a range (N − 1)∆. We can do a better job
of taking into account the volume on the simplex by using a Gaussian

P (p) =
√

N

(2π∆2)(N−1)/2
exp

(
−

N∑

i=1

(pi − qi)2

2∆2

)
,

in which case the mutual information (1) becomes

H(DL;p) = log

(
(2πe∆2)(N−1)/2/

√
N

V(q)

)
= log

(
(eL∆2)(N−1)/2

√
Nq1 . . . qN

)
.

In the first form here, the numerator within the logarithm can be thought of as the volume
occupied by the Gaussian. The

√
N is the correction to the volume that comes from

projecting onto the simplex.
Notice that another neat way to write the mutual information (1) comes from intro-

ducing a Wootters distinguishability metric

ds2 = 4
N∑

i=1

(d
√

pi)2 =
N∑

i=1

dp2
i

pi
.

The volume element for the Wootters metric is

dWp = δ

(
N∑

i=1

(
√

pi)2 − 1

)
2Nd

√
p1 . . . d

√
pN

= δ

(
N∑

i=1

pi − 1

)
dp1 . . . dpN√

p1 . . . pN

=
dp√

p1 . . . pN
.

Redefining the probability P (p) in terms of the Wootters metric,

PW(p)dWp = P (p)dp ,

gives

PW(p) =
√

p1 . . . pNP (p) =⇒ P (p)V(p) =
(

2π

L

)(N−1)/2

PW(p) ,

and the mutual information (1) becomes

H(DL;p) = −
∫

dWpPW(p) log

((
2π

L

)(N−1)/2

PW(p)

)
.

Since the Wootters metric is based on distinguishability from data in many trials, the
mutual information becomes the information of PW(p) relative to an L-dependent, but
position-independent measure mW(p) = (L/2π)(N−1)/2.
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