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I learned about the ideas discussed here from the principal article by Bruno de Finetti
on subjective probabilities: “Foresight: Its Logical Laws, Its Subjective Sources,” in Stud-
ies in Subjective Probability, edited by Henry E. Kyburg, Jr., and Howard E. Smokler
(Wiley, New York, 1964), pages 93–158 [Translation by Henry E. Kyburg, Jr., of origi-
nal article: “La prévision: ses lois logiques, ses sources subjectives,” Annales de l’Institut
Henri Poincaré 7, 1–68 (1937)]. There has been, however, considerable reworking of the
ideas in the following, based mainly on discussions with Rüdiger Schack.

Introduction. A powerful method for justifying subjective probabilities is to regard
the operational definition of a probability p as being that one is willing to make a bet at
odds of (p−1 − 1) : 1. One is willing to put up a stake of one dollar with the chance of
winning S dollars [(S − 1) : 1 odds], where 1 ≤ S ≤ ∞. The expected gain is Ḡ = pS − 1;
requiring a fair bet, i.e., Ḡ = 0, gives p = 1/S.

It is convenient in what follows to let both the stake and the payoff vary, the payoff
being S dollars and the stake being pS [odds of S(1− p) : pS = (1− p) : p = (p−1− 1) : 1].
The bettor, willing to make a bet at odds (p−1 − 1) : 1, approaches a bookmaker who
is accepting stakes and making payoffs. The bookmaker is free to set the payoffs. The
objective is to show that a bettor must use the standard rules of probability theory;
otherwise, the bookie can set the payoffs so that the bettor always loses, i.e., has strictly
negative gains for all outcomes that he believes can occur. The bookie can make the payoffs
either positive or negative. A negative payoff reverses the roles of bettor and bookie: the
bettor receives −pS dollars and pays out −S dollars.

The bookie in this scenario is conventionally called the Dutch book, and the require-
ments on betting behavior imposed by avoiding sure losses in dealing with a Dutch book
are called Dutch-book consistency. A Dutch book doesn’t act like an ordinary bookie, who
takes bets and adjusts the odds on all outcomes in an attempt to balance his gains and
losses no matter what the outcome and derives his sure income by imposing a fee on all
bets. Instead a Dutch book takes advantage of the inconsistent behavior of a bettor to
arrange to win outright no matter what the outcome.

Formally we want to show that avoiding all-negative gains implies the standard prob-
ability rules:

1. Probabilities lie between 0 and 1 inclusive.
2. Certainty implies unity probability.
3. Probabilities of exclusive events add.
4. Bayes’s rule.
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These rules are sufficient to determine the entire structure of probability theory. We also
want to demonstrate the converse, that the standard probability rules imply that the bettor
avoids being forced to accept all-negative gains. The converse is trivial, so we save it till
the end.

1. Probabilities lie between 0 and 1 inclusive. Suppose one bets on an event E
and its complement ¬E (not E). These two events are mutually exclusive and exhaustive
(one or the other occurs, but not both). The stakes are p(E)SE and p(¬E)S¬E , and the
payoffs are SE and S¬E . The bettor’s gain should event E occur is

GE = SE − p(E)SE − p(¬E)S¬E , (1)

and the gain should event E not occur is

G¬E = S¬E − p(E)SE − p(¬E)S¬E . (2)

The Dutch book can always set S¬E = 0, in which case the gains become

GE =
(
1− p(E)

)
SE ,

G¬E = −p(E)SE .
(3)

Avoiding both gains being negative requires that 1− p(E) and −p(E) have opposite signs,
which implies that

0 ≤ p(E) ≤ 1 , (4)

as desired.
What happens if p(E) > 1 is that the bettor is willing to put up a positive stake

p(E)SE , which is lost if E does not occur and which exceeds the payoff SE if E does
occur. In contrast, if p(E) < 0, the bettor is willing to put up a positive stake p(E)SE ,
which is lost if E does not occur, but which leads to a negative payoff SE if E does occur.

2. Certainty implies unity probability. Continuing with same scenario, suppose
that the bettor believes that E is certain to occur and thus that ¬E is certain not to occur.
The bettor’s gain on the occurrence of E is

GE = SE − p(E)SE − p(¬E)S¬E =
(
1− p(E)

)
SE − p(¬E)S¬E . (5)

The Dutch book can arrange that this gain have any value, unless p(E) = 1 and p(¬E) = 0.
Indeed, he can obtain any negative value by choosing payoffs SE < 0 and S¬E > 0. Thus
the requirement that there be no payoffs that yield all-negative gains requires that an
event that the bettor believes is certain to occur have unity probability and, in addition,
an event that he believes is certain not to occur have zero probability.

What if we want to show that unity probability implies certainty? For this purpose,
suppose that the P (E) = 1. Then the gains of Eqs. (1) and (2) can be written in the
matrix form (

GE

G¬E

)
=

(
0 −p(¬E)
−1 1− p(¬E)

)(
SE

S¬E

)
. (6)
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Given any set of gains, including all-negative gains, the Dutch book can find a set of payoffs
that yields those gains, unless the determinant of the matrix in Eq. (6) vanishes, which
implies that p(¬E) = 0. This conclusion in hand, the gains read

GE = 0 ,

G¬E = −SE ,
(7)

and we can go no further. To get the desired result, we must strengthen our consistency
requirement to read that the bettor should never put himself in a situation where on all
outcomes he deems possible, he never wins, but sometimes loses, i.e., has gains all of which
are nonpositive and some of which are negative. To avoid this situation, the bettor must
believe that E is certain to occur, so as to rule out the loss on occurrence of ¬E.

3. Probabilities of exclusive events add. Suppose now that there are two mu-
tually exclusive, but not necessarily exhaustive events, E1 and E2, and that event E
represents the occurrence of E1 or E2, written formally as E = E1 ∨ E2. The relevant
bets, on E, E1, and E2, have probabilities p(E), p(E1), and p(E2), and the associated
stakes are p(E)SE , p(E1)SE1 , and p(E2)SE2 . There are three cases: (i) neither E1 nor E2

occurs, in which case the bettor’s gain is

G¬E = −p(E)SE − p(E1)SE1 − p(E2)SE2 ; (8)

(ii) E1 occurs, in which case the gain is

GE1 =
(
1− p(E)

)
SE +

(
1− p(E1)

)
SE1 − p(E2)SE2 ; (9)

and (iii) E2 occurs, in which case the gain is

GE2 =
(
1− p(E)

)
SE − p(E1)SE1 +

(
1− p(E2)

)
SE2 . (10)

Summarizing these relations in a matrix equation, we get




G¬E

GE1

GE2


 =




−p(E) −p(E1) −p(E2)
1− p(E) 1− p(E1) −p(E2)
1− p(E) −p(E1) 1− p(E2)




︸ ︷︷ ︸
= P




SE

SE1

SE2


 . (11)

For any set of gains, including all-negative gains, the Dutch book can find corresponding
payoffs unless the determinant of P vanishes. Thus we have

0 = det P = p(E)− p(E1)− p(E2) , (12)

which is the desired result,

p(E1 ∨ E2) = p(E) = p(E1) + p(E2) . (13)
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4. Bayes’s rule. We now consider conditional bets. Let B be an event, and let A
be an event that is conditioned on B. The relevant bets are on (i) the occurrence of B,
(ii) the occurrence of A, given that B has occurred, and (iii) the joint occurrence of A and
B, written formally as A ∧ B. The corresponding probabilities are p(B), the conditional
probability p(A | B), and the joint probability p(A ∧B) = p(A,B). Bets are placed on all
three situations, with the agreement that if B does not occur, the bet on A | B is called
off, with the stake returned. There are three cases: (i) B does not occur, in which case
the bettor’s gain is

G¬B = −p(B)SB − p(A, B)SA,B ; (14)

(ii) B occurs, but not A, in which case the gain is

G¬A∧B =
(
1− p(B)

)
SB − p(A, B)SA,B − p(A | B)SA|B ; (15)

and (iii) both A and B occur, in which case the gain is

GA∧B =
(
1− p(B)

)
SB +

(
1− p(A,B)

)
SA,B +

(
1− p(A | B)

)
SA|B . (16)

Again we write a matrix equation relating the gains to the payoffs,




G¬B

G¬A∧B

GA∧B


 =




−p(B) −p(A, B) 0
1− p(B) −p(A, B) −p(A | B)
1− p(B) 1− p(A,B) 1− p(A | B)




︸ ︷︷ ︸
= P




SB

SA,B

SA|B


 , (17)

and again in order to avoid having payoffs with all-negative gains, we require that the
determinant of P vanish:

0 = det P = −p(A | B)p(B) + p(A,B) . (18)

Requiring that there be no all-negative gains thus yields Bayes’s rule relating joint and
conditional probabilities:

p(A ∧B) = p(A,B) = p(A | B)p(B) . (19)

This concludes the Dutch-book derivation of the rules of probability theory.
Normalization of probabilities. The normalization of probabilities follows trivially

from the first three rules: considering again events E and ¬E, we have that

1 = p(E ∨ ¬E) = p(E) + p(¬E) . (20)

Not so obvious is that we can substitute normalization for additivity of probabili-
ties, because we can derive the additivity of probabilities from the other three rules plus
normalization. To see this, suppose again that there are two mutually exclusive, but not
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necessarily exhaustive events, E1 and E2, and that E = E1 ∨E2. Given E, E1 and E2 are
mutually exclusive and exhaustive events, so normalization requires

p(E1 | E) + p(E2 | E) = 1 . (21)

Furthermore, given E1 (or E2), E is certain, so we know that

p(E | E1) = 1 , p(E | E2) = 1 . (22)

Bayes’s rule then gives

p(E1 | E)p(E) = p(E | E1)p(E1) = p(E1) ,

p(E2 | E)p(E) = p(E | E2)p(E2) = p(E2) .
(23)

Adding these two equations gives the additivity of probabilities for mutually exclusive
events:

p(E1 ∨ E2) = p(E) = p(E1) + p(E2) . (24)

It should come as no surprise that we can get the normalization of probabilities directly
from a Dutch-book argument. Returning to the events E and ¬E, we can write the gains
of Eqs. (1) and (2) as a matrix equation:

(
GE

G¬E

)
=

(
1− p(E) −p(¬E)
−p(E) 1− p(¬E)

)(
SE

S¬E

)
. (25)

Given any set of gains, including all-negative gains, the Dutch book can find a set of payoffs
that yields those gains, unless the determinant of the matrix in Eq. (25) vanishes. Thus
we require that

0 = det
(

1− p(E) −p(¬E)
−p(E) 1− p(¬E)

)
= 1− P , P ≡ p(E) + p(¬E) . (26)

The requirement that there be no all-negative gains means that the probabilities must be
normalized to unity:

P = p(E) + p(¬E) = 1 . (27)

It is worth examining in detail how the Dutch book manages to make both gains
negative when the probabilities aren’t normalized. Let p̃(E) = p(E)/P and p̃(¬E) =
p(¬E)/P be a pair of normalized probabilities. For specificity, assume that SE ≤ S¬E .
Since

SE ≤ p̃(E)SE + p̃(¬E)S¬E ≤ S¬E , (28)

i.e.,
PSE ≤ p(E)SE + p(¬E)S¬E ≤ PS¬E , (29)

we have
SE − PS¬E ≤ GE ≤ (1− P )SE ,

(1− P )S¬E ≤ G¬E ≤ S¬E − PSE .
(30)
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If P = 1, we have GE ≤ 0 and G¬E ≥ 0. If P < 1, however, the Dutch book can choose
SE ≤ S¬E < PSE < 0, which makes both gains negative. Similarly, if P > 1, the Dutch
book can choose 0 < SE ≤ S¬E < PSE , again making both gains negative.

If P < 1, we can understand what is going on by saying that the bettor has mistakenly
concluded that E and ¬E are exhaustive, when in fact, there must be another event, say
D, with probability p(D) = 1−p(E)−p(¬E). No bet is placed on D—the stake and payoff
are zero—because the bettor doesn’t recognize the existence of D. The bettor’s putative
gain on occurrence of D is

GD = −p(E)SE − p(¬E)S¬E , (31)

which is positive when GE and G¬E are negative. When P < 1, the Dutch book has
chosen negative stakes and payoffs for both E and ¬E, so the bettor is holding the stake
−p(E)SE − p(¬E)S¬E = GD. What is supposed to happen when D occurs is that the
bettor retains this stake as his gain; since the bettor doesn’t recognize the existence of D,
however, the Dutch book declares that no trial has occurred and tries again till D does
not occur.

The preceding argument can easily be generalized directly to many events. Suppose
one bets on N mutually exclusive, exhaustive events Ej , j = 1, . . . , N , with stakes pjSj

and payoffs Sj . If event Ej occurs, the bettor’s gain is

Gj = Sj −
∑

k

pkSk = (1− pj)Sj −
∑

k 6=j

pkSk . (32)

The gains can be written as a matrix equation




G1

G2
...

GN


 =




1− p1 −p2 · · · −pN

−p1 1− p2 · · · −pN
...

...
. . .

...
−p1 −p2 · · · 1− pN




︸ ︷︷ ︸
≡ P




S1

S2
...

SN


 . (33)

Given any set of gains, including all-negative gains, the Dutch book can find a set of
payoffs that yields those gains unless the determinant of the matrix P is zero. Thus we
require that

0 = det P =
∑

j1,...,jN

εj1...jN
P1j1 · · ·PNjN

, (34)

where εj1...jN is the completely antisymmetric symbol. Since Pjk = δjk − pj , we obtain

det P = 1− P , P ≡
N∑

j=1

pj , (35)
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all the higher-order terms in the determinant vanishing. Thus the requirement that there
be no payoffs that yield all-negative gains enforces normalization of the probabilities:

1 = P =
N∑

j=1

pj . (36)

Probability of nonexclusive events. Consider two events, A and B, which are not
necessarily exclusive. The events A∧¬B and B are mutually exclusive, so we can use the
additivity of probabilities for exclusive events to write

p(A ∧ ¬B) + p(B) = p
(
(A ∧ ¬B) ∨B

)
. (37)

Using the distributive rule, we have

(A ∧ ¬B) ∨B = (A ∨B) ∧ (¬B ∨B) = A ∨B . (38)

Bayes’s rule gives

p(A∧¬B) = p(¬B|A)p(A) =
(
1− p(B|A)

)
p(A) = p(A)− p(B|A)p(A) = p(A)− p(A∧B) .

(39)
Putting this together, we get

p(A ∨B) = p(A) + p(B)− p(A ∧B) . (40)

Discussion. The Dutch-book argument shows that to avoid being put in a situation
where he loses on all outcomes he deems possible, the bettor must use the standard rules
of probability. To show the additional result that probability 1 implies that the bettor
believes an event is certain to occur (or, equivalently, that probability 0 implies than an
event is certain not to occur), we needed to use the slightly stronger requirement that
the bettor should avoid being put in a situation where on outcomes he deems possible, he
never wins and sometimes loses.

In demonstrating the converse, we only need to consider the situations of betting on
mutually exclusive and exhaustive events and betting on conditional events. In the first of
these, betting on N mutually exclusive and exhaustive events, the expected gain is

Ḡ =
∑

j

pjGj =
∑

j

pjSj −
∑

j

pj

∑

k

pkSk = (1− P )
∑

j

pjSj . (41)

If the probabilities are normalized, we have Ḡ = 0, which means that it is impossible for
all the gains to be negative. In the second situation, betting on conditional events as in
the section on Bayes’s rule, the expected gain,

(
1− p(B)

)
G¬B +

(
1− p(A | B)

)
p(B)G¬A∧B + p(A,B)GA∧B

=
(
p(A,B)− p(A | B)p(B)

)

×
(
SB + SA|B − p(B)SB − p(A,B)SA,B − p(A | B)SA|B

)
,

(42)
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is zero when Bayes’s rule is satisfied, making it impossible to arrange that the bettor always
loses.

Another approach. Another approach to the Dutch book argument is phrased
in terms of contracts, or lottery tickets, associated with some set of events. The price
at which one is willing to buy or sell a ticket defines one’s personal probability for the
associated event. The argument proceeds by saying that consistency requires that two
different ways of dividing up the same event in terms of contracts must have the same
price. I learned this approach from Brian Skyrms [“Coherence,” in Scientific Inquiry in
Philosophical Perspective, edited by N. Rescher (Center for Philosophy of Science, Lanham,
MD, 1987), pp. 225–242].

If one is willing to buy or sell the lottery ticket “Pay $1 if E” for $q, this defines
one’s probability for event E to be p(E) = q. One gets immediately that probabilities are
between 0 and 1 inclusive: if one is willing to sell the ticket for a negative amount, this
means that one is willing to pay someone to take it off one’s hands, leading to a sure loss;
likewise, willingness to buy the ticket for more than $1 guarantees a loss.

If one believes E is certain to occur, then one must assign unit probability to E, for
otherwise one would be willing to sell the ticket for less than $1, guaranteeing a loss. To get
the converse, we need again to assume the stronger version of consistency. If one assigns
unity probability to E, then one is willing to buy the ticket for $1. Though this doesn’t
lead to a sure loss, it does guarantee that one can’t win and definitely loses if E does not
occur; to eliminate the possible loss, one must believe that E is certain to occur.

Additivity on mutually exclusive events now comes from the following argument. Let-
ting E1 and E2 be mutually exclusive, with E = E1 ∨ E2, we imagine the following three
tickets: (i) “Pay $1 if E” at price $p(E); (ii) “Pay $1 if E1” at price $p(E1); (iii) “Pay $1 if
E2” at price $p(E2). Under all circumstances, holding the second two tickets is equivalent
to holding the first, so their prices must be the same, i.e., p(E) = p(E1) + p(E2). Putting
it differently, if p(E) > p(E1) + p(E2), buying the first ticket while selling the second two
guarantees a loss, whereas if p(E) < p(E1)+p(E2), selling the first ticket while buying the
second two guarantees a loss. Provided one is willing to contemplate a party buying and
selling a countably infinite number of tickets, this method can obviously be extended to a
countable infinity of exclusive events, thus giving the property of countable additivity for
probabilities.

To get Bayes’s rule, consider two events, D and E, not necessarily mutually exclusive,
and the event D ∧ E. We imagine the following three tickets: (i) “Pay $1 if D ∧ E; pay
$p(E|D) if ¬D” at price $p(E|D) (the second clause in the ticket cancels the ticket at no
cost if D does not occur); (ii) “Pay $1 if D ∧ E” at price $p(D ∧ E); (iii) “Pay $p(E|D)
if ¬D” at price $p(E|D)p(¬D) = $p(E|D)

(
1− p(D)

)
[this is clearly equivalent to a ticket

“Pay $1 if ¬D” at price p(¬D)]. Under all circumstances, holding the second two tickets
is equivalent to holding the first, so their prices must be the same, i.e.,

p(E|D) = p(D ∧ E) + p(E|D)
(
1− p(D)

)
=⇒ p(D ∧ E) = p(E|D)p(D) . (43)

This approach has the advantage of being conceptually simpler than the standard
Dutch book argument. Moreover, it highlights the fact that the inconsistent betting be-
havior that drives the Dutch book argument is really a fundamental logical inconsistency
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that fails to recognize the equivalence of two different ways of stating the same thing.
What one loses in this approach compared to the usual one is the ability to show that
inconsistent betting behavior opens the way to arbitrarily large losses.

A final point. It is important to stress that the only player who assigns probabilities
in the Dutch book argument is the bettor. The Dutch book doesn’t need to know anything
about the events and doesn’t need to have his own probabilities for those events. All
the Dutch book is interested in is whether the bettor is willing to place bets that are
inconsistent with the rules of probability theory. If so, the Dutch book can always arrange
to win, without knowing anything about the events on which the bets are placed. Thus
the Dutch book argument is not about adversarial behavior of the bettor and the bookie;
rather it is wholly about the internal consistency of the bettor.
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