
To: C. Fuchs, K. Manne, J. Renes, and R. Schack
From: C. M. Caves
Subject: Linear dynamics that preserves maximal information is Hamiltonian

2001 January 7; modified 2001 June 23 to include the relation to Kadison’s theorem

The objective of this brief report is to show that any dynamics that preserves maximal
information is unitary and thus is generated by a Hamiltonian. We start from the fact
that any dynamics on density operators should be a convex linear map R. We can extend
R linearly to the positive cone by defining L(aρ) = aR(ρ), where a ≥ 0. We can then
extend it linearly to any Hermitian operator A by writing A = E1 − E2, where E1 and
E2 are positive operators and defining L(A) = L(E1) − L(E2); it is easy to show that
this extension is well defined even though the operators E1 and E2 are not unique. The
resulting superoperator L is positive. We show that if L preserves maximal information—
by taking pure states to pure states in a one-to-one way—then L corresponds to unitary
or antiunitary evolution. Since antiunitary evolution cannot be reached from the identity,
only unitary evolution is allowed.

This result says that when we start with maximal information about a system and we
neither acquire nor lose any information, we are not free to use just any sort of positive
evolution that comes into our heads. Instead we must use Hamiltonian evolution to update
the subjective quantum state. Where does the Hamiltonian come from? It must be an
objective property of the system, which we must know in order the preserve maximal
information and which we can determine by observing the system’s behavior in a wide
variety of circumstances. Thus this seemingly innocuous result confirms the not surprising
notion that a Hamiltonian is the objective property of a quantum system, embodying all
the physical properties of the system. Other kinds of completely positive dynamics are seen
(in the standard way) as coming from situations where we either acquire new information
about a system or lose information by allowing it to become diffused in classical correlations
or entanglement with other systems.

Now let’s get started. All we need to assume is that the dynamics is described by a
convex linear map R on density operators, which maps one-dimensional projectors one-to-
one to one-dimensional projectors:

R(|ψ〉〈ψ|) = |ψ̃〉〈ψ̃| . (1)

The mapR can be extended to a positive superoperator L as described above, and it is easy
to show from the assumption about its action on pure states that L is trace preserving.
The one-to-one assumption is motivated by the notion that one is losing information if
many pure states map to the same pure state.
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One small technical point. All we really know is that L is linear on the real vector
space of Hermitian operators; when we extend the action of L to all operators, we are free
to extend it in any way we wish—we could make it antilinear on operators, for example—
but since it doesn’t matter, we choose the extension to be linear. For example, if L
corresponds to a unitary operator U , then it is the superoperator L = U¯U†. In contrast,
if L corresponds to an antiunitary operator UC, where C is complex conjugation in a
standard basis, then L can be the antilinear superoperator L1 = UC ¯ CU† or it can be
the linear superoperator L2 = U ¯U† ◦ T , where T is transposition in the standard basis.
L1 and L2 have the same action on Hermitian operators.

The superoperator L induces a map on normalized vectors, the tilde map, defined by

T (|ψ〉) = |ψ̃〉 . (2)

The tilde map can be rephased as we please; i.e.,

|ψ̃′〉 = T ′(|ψ〉) = eiν(|ψ〉)T (|ψ〉) = eiν(|ψ〉)|ψ̃〉 (3)

works just as well as the original map. Our strategy is to show that given two normalized
state vectors, |ψ〉 and |φ〉, the tilde map preserves the absolute value of the inner product,
i.e.,

|〈φ|ψ〉| = |〈φ̃|ψ̃〉| . (4)

We can then invoke Wigner’s theorem to assert that the tilde map can be rephased to be
either unitary or antiunitary. Since the superoperator is determined by its action on pure
states, it must be derived either from a unitary or an antinunitary. Since antiunitary maps
are not connected to the identity, they are unsuitable for describing quantum dynamics,
and thus we are left with unitary dynamics as the only possibility.

Now return to those two vectors, |ψ〉 and |φ〉. They span a two-dimensional subspace.
Let |0〉 and |1〉 be orthonormal vectors in this subspace. The tilde map takes these two
orthonormal vectors to linearly independent (one-to-one assumption), but not necessarily
orthogonal vectors |0̃〉 and |1̃〉, which also span a two-dimensional subspace. Set up Pauli
operators in the input subspace, defined relative to the basis |0〉 and |1〉, and set up Pauli
operators in the output subspace, defined relative to |0̃〉 and |0̃⊥〉.

We don’t know at this point that the tilde map takes all the vectors in the input
subspace to vectors in the output subspace. To allow for the possibility that it doesn’t, we
introduce the projector Π̃ onto the output subspace. The superoperator L′ ≡ Π̃ ¯ Π̃ ◦ L
(L followed by projection onto the output subspace) maps any operator to an operator
that lives in the two-dimensional output subspace. Moreover, it takes all one-dimensional
projectors in the input subspace to subnormalized one-dimensional projectors in the output
subspace. Notice that the output is normalized to unity if and only if Π̃ has no effect, i.e.,
the projector produced by L already lies in the output subspace.

Now we’re set. The linearity of L′ means that

L′(1) = α1 + ~t · ~σ ,

L′(σj) = sj1 + Mjkσk .
(5)
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The 3× 3 matrix M can be written as

M =
√

GO , G = MMT , (6)

where O is an orthogonal matrix and G is a positive matrix. A one-dimensional input
projector is mapped to

L′
(

1
2
(1 + ~n · ~σ)

)
=

1
2
(α1 + ~t · ~σ + ~n · ~s 1 + njMjkσk)

=
1
2
[(α + ~s · ~n)1 + (~t + MT~n) · ~σ] .

(7)

The first restriction we have on this map is that |0〉〈0| (~n = ~ez) and |1〉〈1| (~n = −~ez)
map to normalized one-dimensional projectors, |0̃〉〈0̃|) and |1̃〉〈1̃|). This means that

α± sz = 1 =⇒ α = 1 (important) and sz = 0 . (8)

But now we see that ~s must be zero, for were it not, then choosing ~n along ~s would give a
supernormalized output.

With these results, we are back to using L, since the projector Π̃ has no effect (i.e., all
input projectors are mapped to normalized output projectors), and we can use the qubit
proof that I constructed last summer. Equation (7) simplifies to

L
(

1
2
(1 + ~n · ~σ)

)
=

1
2
(1 + ~m · ~σ) , (9)

where
~m ≡ ~t + MT~n (10)

must be a unit vector. It’s pretty obvious that this affine map takes unit vectors to unit
vectors only if (i) ~t = 0 and M = O or (ii) ~t is a unit vector and M = 0, but the next two
paragraphs give a formal proof.

Writing out the requirement that ~m be a unit vector, we get

1 = ~m · ~m = t2 + 2~t ·MT~n + MT~n ·MT~n = t2 + 2M~t · ~n + ~n ·G~n . (11)

Defining the trace-free part of G by

F ≡ G− 1
3
tr(G)I , (12)

we can write Eq. (11) as

1 = t2 +
1
3
tr(G) + 2

√
GO~t · ~n + ~n · F~n . (13)
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The uniqueness of expansions in trace-free tensors (or, equivalently, in spherical harmonics)
implies that

1 = t2 +
1
3
tr(G)

0 =
√

GO~t

0 = F .

(14)

The first and third of these requirements imply that

G =
1
3
tr(G)I = (1− t2)I . (15)

The second requirement implies one of two cases: (i) ~t = 0, which implies that G = I
and M = O or (ii) O~t is a null eigenvector of G, which in view of Eq. (15), means that
G = 0 = M and ~t is a unit vector. The second case, i.e., ~m = ~t regardless of ~n, is
the one where all pure states in the input subspace map to the same output pure state
1
2 (1 + ~t · ~n). We can rule out this second case using our one-to-one requirement. The first
case corresponds to a unitary mapping of the input subspace to the output subspace if
detO = +1 and to an antiunitary mapping if det O = −1. Since unitary and antiunitary
mappings both preserve absolute values of inner products, we have the desired result that
absolute values of inner products are preserved by L and by the tilde mapping.

The result shown here is called Kadison’s theorem [R. Kadison, Topology 3 (Suppl. 2),
177–198 (1965); I learned about Kadison’s theorem by Howard Barnum’s referring me
to B. Simon, “Quantum dynamics: From automorphism to Hamiltonian,” in Studies in
Mathematical Physics, edited by E. H. Lieb, B. Simon, and A. S. Wightman (Princeton
University Press, Princeton, NJ, 1976), pp. 327–349]. The theorem is usually stated in the
following way

A Kadison automorphism Q is a one-to-one, onto map from density operators
to density operators that is convex linear. Any Kadison automorphism is of the
form Q(ρ) = UρU†, where U is unitary or antiunitary.

It would be nice to show that the premises in the two versions are equivalent (without
going through the conclusion, which clearly makes them equivalent), but I’m only able to
do this in one direction.

Suppose that Q is a Kadison automorphism. Its inverse is also a Kadison automor-
phism. It maps pure states to pure states for the following reason. Let

Q(|ψ〉〈ψ|) = ρ =
∑

j

λj |ej〉〈ej | , (16)

where the right side is the eigendecomposition of ρ. Taking the inverse, we get

|ψ〉〈ψ| =
∑

j

λjρj , (17)
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where ρj = Q−1(|ej〉〈ej |). But now the decomposition theorem for density operators
guarantees that ρj = |ψ〉〈ψ| for all j. This implies that Q(|ψ〉〈ψ|) = |ej〉〈ej | for all j,
which means that ρ = Q(|ψ〉〈ψ|) is a pure state. Thus the Kadison automorphism is a
convex linear map on density operators that maps pure states to pure states one-to-one.

I have not been able to show (without going through the conclusion) that the premises
for my theorem imply directly that R is one-to-one on all density operators, which suggests
that my premises are a priori weaker than the assumption of a Kadison automorphism.

I can think of three further projects along this line that might prove useful.
1. Show that my premises imply that R is a Kadison automorphism without going

through the conclusion.
2. Try to push through the proof directly in D dimensions, without going through

Wigner’s theorem. Since the above proof gets one all the way to unitarity or an-
tiunitarity in each two-dimensional subspace, it seems that one ought to be able to
derive the unitarity or antiunitarity directly in all dimensions. One approach would
be to use the complete set of trace-free, Hermitian operators λj . These operators
give a generalized-Bloch-sphere description of quantum states, the differences from
the two-dimensional Bloch sphere being, first, that although all pure states are on
the surface of the generalized Bloch sphere, not all points on the surface correspond
to states and, second (and closely related), that not all orthogonal transformations
represent unitaries. I have, however, an efficient way to describe the pure states and
the orthogonal transformations that correspond to unitaries, so it might be possible
to generalize the above proof. The proof might be made easier by the fact that one
knows the assertion is true.

3. See what other possibilities arise if one drops the insistence on one-to-one maps.
The resulting maps in higher dimensions might be what is necessary to characterize
completely the set of positive maps. It might be useful to have completed the first
project before tackling this one.
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