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Let |ej〉, j = 1, . . . , D, be an orthonormal basis for a D-dimensional Hilbert space.
Let

P+ =
n∑

j=1

|ej〉〈ej | (1)

be the projector onto the subspace S+ spanned by the first n vectors,

P− =
n+m∑

j=n+1

|ej〉〈ej | (2)

be the projector onto the subspace S− spanned by the next m vectors, and P0 = I−P+−P−
be the projector onto the subspace S0 spanned by the remaining D − n −m vectors. An
arbitrary normalized vector can be expanded uniquely as

|ψ〉 = cos ξ
(
cos θ|χ〉+ sin θ|η〉) + sin ξ|φ〉 , (3)

where |χ〉 ∈ S+, |η〉 ∈ S−, and |φ〉 ∈ S0 are normalized vectors. The angle ξ characterizes
a split of projective Hilbert space between subspace S0 and the span of S+ and S−, and
the angle θ characterizes a further split between S+ and S−.

We are interested in the density operator formed from all pure states closer to the
subspace S+ than an angle Θ,

ρ = N
∫

θ≤Θ

dS2D−1 |ψ〉〈ψ| , (4)

where dS2D−1 is the integration measure on the (2D− 1)-sphere and N is a normalization
factor. It is easy to see that this density operator has the form

ρ = λ+P+ + λ−P− + λ0P0 . (5)

Our job is to determine the three eigenvalues, λ± and λ0, which satisfy

nλ+ + mλ− + (D − n−m)λ0 = 1 . (6)

It turns out that λ0 = 1/D, so we have

λ− =
1
m

(
1− D − n−m

D
− nλ+

)
=

1
D

(
1 +

n

m
(1−Dλ+)

)
. (7)
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A small change in |ψ〉 can be written as

|dψ〉 = dξ
(− sin ξ(cos θ|χ〉+ sin θ|η〉) + cos ξ|φ〉) + sin ξ|dφ〉
+ cos ξ

(
dθ(− sin θ|χ〉+ cos θ|η〉) + cos θ|dχ〉+ sin θ|dη〉) .

(8)

This gives a line element on normalized vectors,

ds2 = 〈dψ|dψ〉 = dξ2 + sin2ξ〈dφ|dφ〉+ cos2ξ
(
dθ2 + cos2θ〈dχ|dχ〉+ sin2θ〈dη|dη〉) , (9)

and a corresponding volume element on the (2D − 1)-sphere of normalized vectors

dS2D−1 =sin2(D−n−m)−1ξ cos2(n+m)−1ξ dξ

× cos2n−1θ sin2m−1θ dθ dS2(D−n−m)−1 dS2n−1 dS2m−1 .
(10)

Normalizing the density operator gives

1 = tr(ρ) = N
∫

θ≤Θ

dS2D−1

= NS2(D−n−m)−1S2n−1S2m−1

∫ π/2

0

dξ sin2(D−n−m)−1ξ cos2(n+m)−1ξ

×
∫ Θ

0

dθ cos2n−1θ sin2m−1θ .

(11)

Let’s first verify that λ0 = 1/D. Letting |e0〉 be any normalized vector in S0, we have

λ0 = 〈e0|ρ|e0〉
= N

∫

θ≤Θ

dS2D−1 |〈e0|ψ〉|2︸ ︷︷ ︸
= sin2ξ|〈e0|φ〉|2

= NS2n−1S2m−1

∫ π/2

0

dξ sin2(D−n−m)+1ξ cos2(n+m)−1ξ

×
∫ Θ

0

dθ cos2n−1θ sin2m−1θ

∫
dS2(D−n−m)−1 |〈e0|φ〉|2

︸ ︷︷ ︸
=
S2(D−n−m)−1

D − n−m

.

(12)
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Plugging in the normalization constant from Eq. (11) gives

λ0 =
1

D − n−m

∫ π/2

0

dξ sin2(D−n−m)+1ξ cos2(n+m)−1ξ

∫ π/2

0

dξ sin2(D−n−m)−1ξ cos2(n+m)−1ξ

=
1

D − n−m

∫ 1

0

duuD−n−m(1− u)n+m−1

∫ 1

0

du uD−n−m−1(1− u)n+m−1

=
1

D − n−m

Γ(D − n−m + 1)Γ(n + m)/Γ(D + 1)
Γ(D − n−m)Γ(n + m)/Γ(D)

=
1
D

.

(13)

What about λ+? Letting |e+〉 be any normalized vector in S+, we have

λ+ = 〈e+|ρ|e+〉
= N

∫

θ≤Θ

dS2D−1 |〈e+|ψ〉|2︸ ︷︷ ︸
= cos2ξ cos2θ|〈e+|χ〉|2

= NS2(D−n−m)−1S2m−1

∫ π/2

0

dξ sin2(D−n−m)−1ξ cos2(n+m)+1ξ

×
∫ Θ

0

dθ cos2n+1θ sin2m−1θ

∫
dS2n−1 |〈e+|χ〉|2

︸ ︷︷ ︸
=
S2n−1

n

.

(14)

Again plugging in the normalization constant, we get

λ+ =
1
n

∫ π/2

0

dξ sin2(D−n−m)−1ξ cos2(n+m)+1ξ

∫ π/2

0

dξ sin2(D−n−m)−1ξ cos2(n+m)−1ξ

∫ Θ

0

dθ cos2n+1θ sin2m−1θ

∫ Θ

0

dθ cos2n−1θ sin2m−1θ

=
1
n

∫ 1

0

duuD−n−m−1(1− u)n+m

∫ 1

0

du uD−n−m−1(1− u)n+m−1

︸ ︷︷ ︸
=

Γ(D − n−m)Γ(n + m + 1)/Γ(D + 1)
Γ(D − n−m)Γ(n + m)/Γ(D)

=
n + m

D

∫ sin2Θ

0

dv vm−1(1− v)n

∫ sin2Θ

0

dv vm−1(1− v)n−1

, (15)
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and this gives

λ+ =
n + m

nD

∫ sin2Θ

0

dv vm−1(1− v)n

∫ sin2Θ

0

dv vm−1(1− v)n−1

. (16)

We now specialize to the case of interest, n = m and Θ = π/4, so that ρ is constructed
from pure states occupying one of two halves of Hilbert space:

λ+ =
2
D

∫ 1/2

0

dv vn−1(1− v)n

∫ 1/2

0

dv vn−1(1− v)n−1

. (17)

Define the integral

I(n,m) = 2n+m

∫ 1/2

0

dv (1− v)nvm−1 . (18)

For m ≥ 1, integrating by parts gives

I(n,m) = 2n+m

(
(1− v)n vm

m

∣∣∣∣
1/2

0

+
n

m

∫ 1/2

0

dv (1− v)n−1vm

)

=
1
m

+
n

m
I(n− 1,m + 1) ,

(19)

which when combined with

I(0,m) = 2m

∫ 1/2

0

dv vm−1 = 2m vm

m

∣∣∣∣
1/2

0

= 1/m , (20)

allows us to find I(n,m) recursively,

I(n,m) = n!(m− 1)!
n∑

k=0

1
(n− k)!(m + k)!

. (21)

This allows us to write

∫ 1/2

0

dv vn−1(1− v)n =
I(n, n)

22n
=

n!(n− 1)!
22n

n∑

k=0

1
(n− k)!(n + k)!

,

∫ 1/2

0

dv vn−1(1− v)n−1 =
I(n− 1, n)

22n−1
=

[(n− 1)!]2

22n−1

n−1∑

k=0

1
(n− k − 1)!(n + k)!

.

(22)
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Mathematica does the sums as

n∑

k=0

1
(n− k)!(n + k)!

=
22n−1

(2n)!

(
1 +

Γ(n + 1/2)√
π n!︸ ︷︷ ︸

=
(2n− 1)!!

2nn!

=
(2n)!

22n(n!)2

)
,

n−1∑

k=0

1
(n− k − 1)!(n + k)!

=
22(n−1)

(2n− 1)!
,

(23)

which gives us

∫ 1/2

0

dv vn−1(1− v)n =
n!(n− 1)!

2(2n)!

(
1 +

Γ(n + 1/2)√
π n!

)
,

∫ 1/2

0

dv vn−1(1− v)n−1 =
[(n− 1)!]2

2(2n− 1)!
.

(24)

Plugging these results into Eqs. (17) and (7), we get

λ± =
1
D

(
1± Γ(n + 1/2)√

π n!

)
=

1
D

(
1± (2n− 1)!!

2nn!

)
=

1
D

(
1± (2n)!

22n(n!)2

)
. (25)

When n = 1, we get λ+ = 3/2D and λ− = 1/2D, and when n = 2, λ+ = 11/8D and
λ− = 5/8D. For large n (and D), we can write

Γ(n + 1/2)
n!

=
1√
n

+ o

(
1

n3/2

)
, (26)

which gives

λ± =
1
D

(
1± 1√

πn
+ o

(
1

n3/2

))
. (27)

The entropy can be put in the form

S(ρ) = −nλ+ log λ+ − nλ− log λ− − (D − 2n)λ0 log λ0

= −2n

D

(
Dλ+

2

(
log(Dλ+/2)− log(D/2)

)
+

Dλ−
2

(
log(Dλ−/2)− log(D/2)

)

+
(

1− 2n

D

)
log D

)

= log D − 2n

D

(
1−H2(Dλ+/2)

)
.

(28)
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For fixed D, this is a decreasing function of n. For large D, the entropy decreases to
log D − 1/πD ln 2 as n becomes large. We get at this behavior by noting that for large n,
we have

Dλ±
2

=
1
2

(
1± 1√

πn
+ o

(
1

n3/2

))
, (29)

which gives the following approximate forms for the binary entropy,

H2(Dλ+/2) = 1− 1
2 ln 2

(
(Dλ+/2− 1/2)2

1/2
+

(Dλ−/2− 1/2)2

1/2

)
= 1− 1

2πn ln 2
, (30)

and the entropy,

S(ρ) = log D − 1
πD ln 2

= log D − 0.459
D

. (31)
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