Entropy of Hilbert-space splits into two equal parts
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Let |ej), 7 = 1,...,D, be an orthonormal basis for a D-dimensional Hilbert space.
Let

n
Py =S Je)es] (1)
j=1
be the projector onto the subspace S, spanned by the first n vectors,
n—+m
Po= 3 el )
j=n+1

be the projector onto the subspace S_ spanned by the next m vectors, and Py = [— P, —P_
be the projector onto the subspace Sy spanned by the remaining D — n — m vectors. An
arbitrary normalized vector can be expanded uniquely as

) = cos &(cos O]x) +sinbln)) + sin&|¢) , (3)

where |x) € S4, |n) € S_, and |¢) € Sy are normalized vectors. The angle £ characterizes
a split of projective Hilbert space between subspace Sy and the span of S, and S_, and
the angle 6 characterizes a further split between S and S_.

We are interested in the density operator formed from all pure states closer to the
subspace S than an angle O,

p=N dSap—1 [¥) (|, (4)

0<0

where dS;p_1 is the integration measure on the (2D — 1)-sphere and N is a normalization
factor. It is easy to see that this density operator has the form

p:/\+P_|_+/\_P_+>\0PO. (5)
Our job is to determine the three eigenvalues, A+ and A\g, which satisfy
nAy +mA_+(D—n—m)Ag=1. (6)

It turns out that A\g = 1/D, so we have

A_:%<1—MT_m—n)\+):%(1+%(1—DA+)>. (7)
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A small change in |¢)) can be written as

|dip) = d (—sin&(cos 0]x) + sinb]n)) + cos&|g)) + sin &|de)

+ cos&(df(—sinb|x) + cosb|n)) + cos b|dx) + sin f|dn)) . (8)

This gives a line element on normalized vectors,
ds® = (dip|dip) = d&* + sin*€(dp|de) + cos?E (dO? + cos?(dx|dx) + sin*O{dn|dn)) , (9)
and a corresponding volume element on the (2D — 1)-sphere of normalized vectors

dSQD_l _ SiHQ(D_n_m)_1€COSQ(n+m)_1€d§

10
X cos2" 10 sin®>™ 10 dp dS3(p—n—m)—1dSan—1dS2m_1 . (10

Normalizing the density operator gives

1= tr(p) = N dSQD_l
<O

/2
= NS (D—n—m)—182n-182m—1 / dg sin?P=n=m)=le cog?(ntm)=le  (11)
0

e
x/ df cos®™ 19 sin®>™ 19 .
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Let’s first verify that A\ = 1/D. Letting |eg) be any normalized vector in Sy, we have

Ao = (eolpleo)
=N dSop—1 [{eol)|?
<O N——
= sin’*¢|(eo|)|?
w/2
=NGSs,_1S9m_1 / d€ sinz(D_"_m)Hf COSQ(”+m)_1§ (12)
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Plugging in the normalization constant from Eq. (11) gives

/2
: 2(D—n—m)+1 2(n+m)—1
1 /0 d§ sin £ cos 13

Ao =
_n — w/2
D n m / df SiHQ(D—n—m)—lgCOSQ(?’L—Fm)—lé
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- C (13)
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1
=5
What about A7 Letting |et) be any normalized vector in S, we have
At = (eqlples)
=N dS2p-1 [{e+[¥)[?
0<© ——
= cos”€ cos*f| (e |x)*
/2
= NSa(D-n—m)-182m-1 / dg sin? P71 oML (14)
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Again plugging in the normalization constant, we get
/2 ©
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and this gives

sin @
/ 1 — o)
n+m
sin2© ’
/ dov™=1(1 — vyl
0

+

(16)

We now specialize to the case of interest, n = m and © = 7/4, so that p is constructed

from pure states occupying one of two halves of Hilbert space:

1/2
/ dvo™ (1 —o)"
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D ri/2 '
/ dvo" (1 — )"t
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Define the integral
1/2
I(n,m) = 2”+m/ dv (1 — o)™ 1L,
0

For m > 1, integrating by parts gives

o™ 1/2 1/2
I(n,m)=2"""[ (1 —v)"— / (1—ov)" 1™
m |, m
1

:——I—ﬁl(n—l,m—i-l),
m - m

which when combined with

1/2 o |12
I(O,m)sz/ dvv™™t =2 — =1/m,
0 m o
allows us to find I(n,m) recursively,
I(n,m)=nl(m—1)! (n—k)!l(m—i—k;)
k=0
This allows us to write
/1/2dvvn_1(1—v)":I(n’n):n!(n_l)! = 1
0 22n 22n p (n—K)!(n+k)’
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Mathematica does the sums as

n

1 gt T'(n+1/2)
2 T TR @) (” il ) ’
———

k=0
_ (@2n-1)N
27n!
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which gives us
vz L nl(n—1)! I(n+1/2)
/0 dvo" (1 —o)" = 2(2n)) (1+ ! > , o
/1/2 dov" 11 —o)" ! = —[(n — P )
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Plugging these results into Egs. (17) and (7), we get

de=p (1i%) = (u:%) - (u 22(3(72;)2> (%)

When n = 1, we get Ay = 3/2D and A\_ = 1/2D, and when n = 2, A = 11/8D and
A_ =5/8D. For large n (and D), we can write

C(n+1/2) 1 1
T_%”(W)’ (26)
which gives
WIS SIS BRI (27)
=7 D N '

The entropy can be put in the form

S(p) = —nAplog Ay —nA_logA_ — (D — 2n)Xglog Ao

= _%” (% <log(D)\+/2) -~ log(D/2)> + % (log(D)\—/Q) - 10g(D/2)>

2
+ (1 . 5”) logD)

—log D — %”(1 — Hy(DA,/2)) .

(28)



For fixed D, this is a decreasing function of n. For large D, the entropy decreases to
logD — 1/7D1In2 as n becomes large. We get at this behavior by noting that for large n,

we have DA ) . .
Ti:§<1i\/ﬁ+o<n3/2>> : (29)
which gives the following approximate forms for the binary entropy,
Hy(DAL/2) =1 — 21112 ((D)\+/12/; /272 . (D)\_/12/; 1/2)2) L 27m11n2 30)
and the entropy,
S(p)zlogD—WDl1r12 :logD—O'iﬁ. (31)



